Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers

<h4>Background</h4> Accurate estimates of gestational age (GA) at birth are important for preterm birth surveillance but can be challenging to obtain in low income countries. Our objective was to develop machine learning models to accurately estimate GA shortly after birth using clinical...

Full description

Bibliographic Details
Main Authors: Steven Hawken, Robin Ducharme, Malia S. Q. Murphy, Brieanne Olibris, A. Brianne Bota, Lindsay A. Wilson, Wei Cheng, Julian Little, Beth K. Potter, Kathryn M. Denize, Monica Lamoureux, Matthew Henderson, Katelyn J. Rittenhouse, Joan T. Price, Humphrey Mwape, Bellington Vwalika, Patrick Musonda, Jesmin Pervin, A. K. Azad Chowdhury, Anisur Rahman, Pranesh Chakraborty, Jeffrey S. A. Stringer, Kumanan Wilson
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2023-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987787/?tool=EBI
_version_ 1827996563322961920
author Steven Hawken
Robin Ducharme
Malia S. Q. Murphy
Brieanne Olibris
A. Brianne Bota
Lindsay A. Wilson
Wei Cheng
Julian Little
Beth K. Potter
Kathryn M. Denize
Monica Lamoureux
Matthew Henderson
Katelyn J. Rittenhouse
Joan T. Price
Humphrey Mwape
Bellington Vwalika
Patrick Musonda
Jesmin Pervin
A. K. Azad Chowdhury
Anisur Rahman
Pranesh Chakraborty
Jeffrey S. A. Stringer
Kumanan Wilson
author_facet Steven Hawken
Robin Ducharme
Malia S. Q. Murphy
Brieanne Olibris
A. Brianne Bota
Lindsay A. Wilson
Wei Cheng
Julian Little
Beth K. Potter
Kathryn M. Denize
Monica Lamoureux
Matthew Henderson
Katelyn J. Rittenhouse
Joan T. Price
Humphrey Mwape
Bellington Vwalika
Patrick Musonda
Jesmin Pervin
A. K. Azad Chowdhury
Anisur Rahman
Pranesh Chakraborty
Jeffrey S. A. Stringer
Kumanan Wilson
author_sort Steven Hawken
collection DOAJ
description <h4>Background</h4> Accurate estimates of gestational age (GA) at birth are important for preterm birth surveillance but can be challenging to obtain in low income countries. Our objective was to develop machine learning models to accurately estimate GA shortly after birth using clinical and metabolomic data. <h4>Methods</h4> We derived three GA estimation models using ELASTIC NET multivariable linear regression using metabolomic markers from heel-prick blood samples and clinical data from a retrospective cohort of newborns from Ontario, Canada. We conducted internal model validation in an independent cohort of Ontario newborns, and external validation in heel prick and cord blood sample data collected from newborns from prospective birth cohorts in Lusaka, Zambia and Matlab, Bangladesh. Model performance was measured by comparing model-derived estimates of GA to reference estimates from early pregnancy ultrasound. <h4>Results</h4> Samples were collected from 311 newborns from Zambia and 1176 from Bangladesh. The best-performing model accurately estimated GA within about 6 days of ultrasound estimates in both cohorts when applied to heel prick data (MAE 0.79 weeks (95% CI 0.69, 0.90) for Zambia; 0.81 weeks (0.75, 0.86) for Bangladesh), and within about 7 days when applied to cord blood data (1.02 weeks (0.90, 1.15) for Zambia; 0.95 weeks (0.90, 0.99) for Bangladesh). <h4>Conclusions</h4> Algorithms developed in Canada provided accurate estimates of GA when applied to external cohorts from Zambia and Bangladesh. Model performance was superior in heel prick data as compared to cord blood data.
first_indexed 2024-04-10T05:13:53Z
format Article
id doaj.art-89a231c2041c456d9b2e5027b76fea75
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-04-10T05:13:53Z
publishDate 2023-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-89a231c2041c456d9b2e5027b76fea752023-03-09T05:31:25ZengPublic Library of Science (PLoS)PLoS ONE1932-62032023-01-01183Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markersSteven HawkenRobin DucharmeMalia S. Q. MurphyBrieanne OlibrisA. Brianne BotaLindsay A. WilsonWei ChengJulian LittleBeth K. PotterKathryn M. DenizeMonica LamoureuxMatthew HendersonKatelyn J. RittenhouseJoan T. PriceHumphrey MwapeBellington VwalikaPatrick MusondaJesmin PervinA. K. Azad ChowdhuryAnisur RahmanPranesh ChakrabortyJeffrey S. A. StringerKumanan Wilson<h4>Background</h4> Accurate estimates of gestational age (GA) at birth are important for preterm birth surveillance but can be challenging to obtain in low income countries. Our objective was to develop machine learning models to accurately estimate GA shortly after birth using clinical and metabolomic data. <h4>Methods</h4> We derived three GA estimation models using ELASTIC NET multivariable linear regression using metabolomic markers from heel-prick blood samples and clinical data from a retrospective cohort of newborns from Ontario, Canada. We conducted internal model validation in an independent cohort of Ontario newborns, and external validation in heel prick and cord blood sample data collected from newborns from prospective birth cohorts in Lusaka, Zambia and Matlab, Bangladesh. Model performance was measured by comparing model-derived estimates of GA to reference estimates from early pregnancy ultrasound. <h4>Results</h4> Samples were collected from 311 newborns from Zambia and 1176 from Bangladesh. The best-performing model accurately estimated GA within about 6 days of ultrasound estimates in both cohorts when applied to heel prick data (MAE 0.79 weeks (95% CI 0.69, 0.90) for Zambia; 0.81 weeks (0.75, 0.86) for Bangladesh), and within about 7 days when applied to cord blood data (1.02 weeks (0.90, 1.15) for Zambia; 0.95 weeks (0.90, 0.99) for Bangladesh). <h4>Conclusions</h4> Algorithms developed in Canada provided accurate estimates of GA when applied to external cohorts from Zambia and Bangladesh. Model performance was superior in heel prick data as compared to cord blood data.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987787/?tool=EBI
spellingShingle Steven Hawken
Robin Ducharme
Malia S. Q. Murphy
Brieanne Olibris
A. Brianne Bota
Lindsay A. Wilson
Wei Cheng
Julian Little
Beth K. Potter
Kathryn M. Denize
Monica Lamoureux
Matthew Henderson
Katelyn J. Rittenhouse
Joan T. Price
Humphrey Mwape
Bellington Vwalika
Patrick Musonda
Jesmin Pervin
A. K. Azad Chowdhury
Anisur Rahman
Pranesh Chakraborty
Jeffrey S. A. Stringer
Kumanan Wilson
Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers
PLoS ONE
title Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers
title_full Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers
title_fullStr Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers
title_full_unstemmed Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers
title_short Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers
title_sort development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987787/?tool=EBI
work_keys_str_mv AT stevenhawken developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT robinducharme developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT maliasqmurphy developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT brieanneolibris developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT abriannebota developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT lindsayawilson developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT weicheng developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT julianlittle developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT bethkpotter developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT kathrynmdenize developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT monicalamoureux developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT matthewhenderson developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT katelynjrittenhouse developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT joantprice developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT humphreymwape developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT bellingtonvwalika developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT patrickmusonda developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT jesminpervin developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT akazadchowdhury developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT anisurrahman developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT praneshchakraborty developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT jeffreysastringer developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT kumananwilson developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers