In-tube shock wave compression by piston effect of unsteady jet

A high-pressure field is generated in a circular tube by introducing an unsteady jet from its open end. The head of this jet acts as a piston, driving compression waves ahead of it. The peak value of the induced overpressure is evaluated as a solution of a Riemann problem, wherein the jet head is eq...

Full description

Bibliographic Details
Main Authors: Daisuke KUWABARA, Hirokatsu KAWASAKI, Akira IWAKAWA, Akihiro SASOH, Tetsuya YAMASHITA, Koji TAGUCHI
Format: Article
Language:English
Published: The Japan Society of Mechanical Engineers 2020-04-01
Series:Mechanical Engineering Journal
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/mej/7/3/7_19-00534/_pdf/-char/en
Description
Summary:A high-pressure field is generated in a circular tube by introducing an unsteady jet from its open end. The head of this jet acts as a piston, driving compression waves ahead of it. The peak value of the induced overpressure is evaluated as a solution of a Riemann problem, wherein the jet head is equivalent to a piston head. The jet head of the driver gas, with a filling pressure of 400 kPa, is equivalent to a piston head moving at 160 m/s. This high-pressure generation scheme through the “piston effect” is useful for industrial applications, including filter cleaning in dust collectors, and as an interesting example of unsteady, compressible fluid dynamics.
ISSN:2187-9745