Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system

This article is concerned with the model $$\displaylines{ u_t=\Delta u-\nabla\cdot(\chi u\nabla v)+\nabla\cdot(\xi u\nabla w),\quad x\in \Omega,\; t>0,\cr 0=\Delta v+\alpha u-\beta v,\quad x\in\Omega,\; t>0,\cr 0=\Delta w+\gamma u-\delta w,\quad x\in\Omega,\; t>0 }$$ with homogeneou...

Full description

Bibliographic Details
Main Authors: Yuhuan Li, Ke Lin, Chunlai Mu
Format: Article
Language:English
Published: Texas State University 2015-06-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2015/146/abstr.html
_version_ 1818766082082603008
author Yuhuan Li
Ke Lin
Chunlai Mu
author_facet Yuhuan Li
Ke Lin
Chunlai Mu
author_sort Yuhuan Li
collection DOAJ
description This article is concerned with the model $$\displaylines{ u_t=\Delta u-\nabla\cdot(\chi u\nabla v)+\nabla\cdot(\xi u\nabla w),\quad x\in \Omega,\; t>0,\cr 0=\Delta v+\alpha u-\beta v,\quad x\in\Omega,\; t>0,\cr 0=\Delta w+\gamma u-\delta w,\quad x\in\Omega,\; t>0 }$$ with homogeneous Neumann boundary conditions in a bounded domain $\Omega\subset \mathbb{R}^{n}\;(n=2,3)$. Under the critical condition $\chi \alpha-\xi \gamma=0$, we show that the system possesses a unique global solution that is uniformly bounded in time. Moreover, when $n=2$, by some appropriate smallness conditions on the initial data, we assert that this solution converges to ($\bar{u}_0$, $\frac{\alpha}{\beta}\bar{u}_0$, $\frac{\gamma}{\delta}\bar{u}_0$) exponentially, where $\bar{u}_0:=\frac{1}{|\Omega|}\int_{\Omega}u_0$.
first_indexed 2024-12-18T08:28:20Z
format Article
id doaj.art-89a3b4409356498880b54376e506c647
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-18T08:28:20Z
publishDate 2015-06-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-89a3b4409356498880b54376e506c6472022-12-21T21:14:31ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912015-06-012015146,113Asymptotic behavior for small mass in an attraction-repulsion chemotaxis systemYuhuan Li0Ke Lin1Chunlai Mu2 Sichuan Normal Univ., Chengdu, China Chongqing Univ., Chongqing, China Chongqing Univ., Chongqing, China This article is concerned with the model $$\displaylines{ u_t=\Delta u-\nabla\cdot(\chi u\nabla v)+\nabla\cdot(\xi u\nabla w),\quad x\in \Omega,\; t>0,\cr 0=\Delta v+\alpha u-\beta v,\quad x\in\Omega,\; t>0,\cr 0=\Delta w+\gamma u-\delta w,\quad x\in\Omega,\; t>0 }$$ with homogeneous Neumann boundary conditions in a bounded domain $\Omega\subset \mathbb{R}^{n}\;(n=2,3)$. Under the critical condition $\chi \alpha-\xi \gamma=0$, we show that the system possesses a unique global solution that is uniformly bounded in time. Moreover, when $n=2$, by some appropriate smallness conditions on the initial data, we assert that this solution converges to ($\bar{u}_0$, $\frac{\alpha}{\beta}\bar{u}_0$, $\frac{\gamma}{\delta}\bar{u}_0$) exponentially, where $\bar{u}_0:=\frac{1}{|\Omega|}\int_{\Omega}u_0$.http://ejde.math.txstate.edu/Volumes/2015/146/abstr.htmlChemotaxisattraction-repulsionboundednessconvergence
spellingShingle Yuhuan Li
Ke Lin
Chunlai Mu
Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system
Electronic Journal of Differential Equations
Chemotaxis
attraction-repulsion
boundedness
convergence
title Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system
title_full Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system
title_fullStr Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system
title_full_unstemmed Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system
title_short Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system
title_sort asymptotic behavior for small mass in an attraction repulsion chemotaxis system
topic Chemotaxis
attraction-repulsion
boundedness
convergence
url http://ejde.math.txstate.edu/Volumes/2015/146/abstr.html
work_keys_str_mv AT yuhuanli asymptoticbehaviorforsmallmassinanattractionrepulsionchemotaxissystem
AT kelin asymptoticbehaviorforsmallmassinanattractionrepulsionchemotaxissystem
AT chunlaimu asymptoticbehaviorforsmallmassinanattractionrepulsionchemotaxissystem