Neural network attribution methods for problems in geoscience: A novel synthetic benchmark dataset
Despite the increasingly successful application of neural networks to many problems in the geosciences, their complex and nonlinear structure makes the interpretation of their predictions difficult, which limits model trust and does not allow scientists to gain physical insights about the problem at...
Những tác giả chính: | Antonios Mamalakis, Imme Ebert-Uphoff, Elizabeth A. Barnes |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
Cambridge University Press
2022-01-01
|
Loạt: | Environmental Data Science |
Những chủ đề: | |
Truy cập trực tuyến: | https://www.cambridge.org/core/product/identifier/S2634460222000073/type/journal_article |
Những quyển sách tương tự
-
Physically Interpretable Neural Networks for the Geosciences: Applications to Earth System Variability
Bằng: Benjamin A. Toms, et al.
Được phát hành: (2020-09-01) -
Utilization of Augmented and Virtual Reality in Geoscience
Bằng: Věroslav HOLUŠA, et al.
Được phát hành: (2022-06-01) -
Knowledge Graphs and Explainable AI in Healthcare
Bằng: Enayat Rajabi, et al.
Được phát hành: (2022-09-01) -
A report on gender diversity and equality in the geosciences: an analysis of the Swiss Geoscience Meetings from 2003 to 2019
Bằng: Francesca Piccoli, et al.
Được phát hành: (2021-01-01) -
What Pattern of Progression in Geoscience Fieldwork can be Recognised by Geoscience Educators?
Bằng: Chris J.H. King
Được phát hành: (2019-04-01)