Neural network attribution methods for problems in geoscience: A novel synthetic benchmark dataset

Despite the increasingly successful application of neural networks to many problems in the geosciences, their complex and nonlinear structure makes the interpretation of their predictions difficult, which limits model trust and does not allow scientists to gain physical insights about the problem at...

Descripció completa

Dades bibliogràfiques
Autors principals: Antonios Mamalakis, Imme Ebert-Uphoff, Elizabeth A. Barnes
Format: Article
Idioma:English
Publicat: Cambridge University Press 2022-01-01
Col·lecció:Environmental Data Science
Matèries:
Accés en línia:https://www.cambridge.org/core/product/identifier/S2634460222000073/type/journal_article

Ítems similars