Neural network attribution methods for problems in geoscience: A novel synthetic benchmark dataset

Despite the increasingly successful application of neural networks to many problems in the geosciences, their complex and nonlinear structure makes the interpretation of their predictions difficult, which limits model trust and does not allow scientists to gain physical insights about the problem at...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Antonios Mamalakis, Imme Ebert-Uphoff, Elizabeth A. Barnes
Aineistotyyppi: Artikkeli
Kieli:English
Julkaistu: Cambridge University Press 2022-01-01
Sarja:Environmental Data Science
Aiheet:
Linkit:https://www.cambridge.org/core/product/identifier/S2634460222000073/type/journal_article

Samankaltaisia teoksia