Neural network attribution methods for problems in geoscience: A novel synthetic benchmark dataset

Despite the increasingly successful application of neural networks to many problems in the geosciences, their complex and nonlinear structure makes the interpretation of their predictions difficult, which limits model trust and does not allow scientists to gain physical insights about the problem at...

ver descrição completa

Detalhes bibliográficos
Principais autores: Antonios Mamalakis, Imme Ebert-Uphoff, Elizabeth A. Barnes
Formato: Artigo
Idioma:English
Publicado em: Cambridge University Press 2022-01-01
coleção:Environmental Data Science
Assuntos:
Acesso em linha:https://www.cambridge.org/core/product/identifier/S2634460222000073/type/journal_article

Registros relacionados