The polarization approach to registration femtosecond time slots based stimulated photon echo on the exciton states
It is reported about the first experiments on the registration of a femtosecond time interval using the effect of non-Faraday rotation of the plane polarization of the stimulated photon echo. The experiment was performed at room temperature in a three-layer semiconductor film thickness of 300 nm, ob...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2017-01-01
|
Series: | EPJ Web of Conferences |
Online Access: | http://dx.doi.org/10.1051/epjconf/201713202017 |
Summary: | It is reported about the first experiments on the registration of a femtosecond time interval using the effect of non-Faraday rotation of the plane polarization of the stimulated photon echo. The experiment was performed at room temperature in a three-layer semiconductor film thickness of 300 nm, obtained by magnetron sputtering. The fundamental difference of this effect from the Faraday’s effect was shown. We give conclusions about the possibility of femtosecond time intervals registration at room temperature with an accuracy of 25 fs in the polarization principle of action, rather than spectral. |
---|---|
ISSN: | 2100-014X |