Blended Chaos Control of Permanent Magnet Linear Synchronous Motor

Aiming at the chaos problem of permanent magnet linear synchronous motor in direct-drive wave power generation system, based on the ideal chaotic model with increased rotor edge effect, the permanent magnet linear synchronous motor system chaotic system was analyzed and a new sliding mode compound c...

Full description

Bibliographic Details
Main Authors: Dongshen Xie, Junhua Yang, Haoran Cai, Fengjun Xiong, Baozhou Huang, Wei Wang
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8445566/
Description
Summary:Aiming at the chaos problem of permanent magnet linear synchronous motor in direct-drive wave power generation system, based on the ideal chaotic model with increased rotor edge effect, the permanent magnet linear synchronous motor system chaotic system was analyzed and a new sliding mode compound chaos control strategy was proposed. This strategy compensates for the shortcomings of the sliding mode control lag and chattering by using the complementary advantages of compound control, and can correct system parameters in real time. By using Lyapunov stability criterion, it was proved that the global convergence of the system is consistent. The simulation results show that the composite chaos control strategy can rapidly disengage the chaotic state of the motor system, suppress system chattering, weaken the control overshoot phenomenon, and has strong robustness and high control precision.
ISSN:2169-3536