Information Geometric Approach on Most Informative Boolean Function Conjecture

Let X n be a memoryless uniform Bernoulli source and Y n be the output of it through a binary symmetric channel. Courtade and Kumar conjectured that the Boolean function f : { 0 , 1 } n → { 0 , 1 } that maximizes the mutual information I ( f ( X n ) ;...

Full description

Bibliographic Details
Main Author: Albert No
Format: Article
Language:English
Published: MDPI AG 2018-09-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/20/9/688
_version_ 1798042606639251456
author Albert No
author_facet Albert No
author_sort Albert No
collection DOAJ
description Let X n be a memoryless uniform Bernoulli source and Y n be the output of it through a binary symmetric channel. Courtade and Kumar conjectured that the Boolean function f : { 0 , 1 } n → { 0 , 1 } that maximizes the mutual information I ( f ( X n ) ; Y n ) is a dictator function, i.e., f ( x n ) = x i for some i. We propose a clustering problem, which is equivalent to the above problem where we emphasize an information geometry aspect of the equivalent problem. Moreover, we define a normalized geometric mean of measures and interesting properties of it. We also show that the conjecture is true when the arithmetic and geometric mean coincide in a specific set of measures.
first_indexed 2024-04-11T22:37:51Z
format Article
id doaj.art-89b63e0ca75e4f60b97f176d3584f6ac
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-11T22:37:51Z
publishDate 2018-09-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-89b63e0ca75e4f60b97f176d3584f6ac2022-12-22T03:59:09ZengMDPI AGEntropy1099-43002018-09-0120968810.3390/e20090688e20090688Information Geometric Approach on Most Informative Boolean Function ConjectureAlbert No0Department of Electronical and Electrical Engineering, Hongik University, Seoul 04066, KoreaLet X n be a memoryless uniform Bernoulli source and Y n be the output of it through a binary symmetric channel. Courtade and Kumar conjectured that the Boolean function f : { 0 , 1 } n → { 0 , 1 } that maximizes the mutual information I ( f ( X n ) ; Y n ) is a dictator function, i.e., f ( x n ) = x i for some i. We propose a clustering problem, which is equivalent to the above problem where we emphasize an information geometry aspect of the equivalent problem. Moreover, we define a normalized geometric mean of measures and interesting properties of it. We also show that the conjecture is true when the arithmetic and geometric mean coincide in a specific set of measures.http://www.mdpi.com/1099-4300/20/9/688Boolean functionBregman divergenceclusteringgeometric meanJensen–Shannon divergence
spellingShingle Albert No
Information Geometric Approach on Most Informative Boolean Function Conjecture
Entropy
Boolean function
Bregman divergence
clustering
geometric mean
Jensen–Shannon divergence
title Information Geometric Approach on Most Informative Boolean Function Conjecture
title_full Information Geometric Approach on Most Informative Boolean Function Conjecture
title_fullStr Information Geometric Approach on Most Informative Boolean Function Conjecture
title_full_unstemmed Information Geometric Approach on Most Informative Boolean Function Conjecture
title_short Information Geometric Approach on Most Informative Boolean Function Conjecture
title_sort information geometric approach on most informative boolean function conjecture
topic Boolean function
Bregman divergence
clustering
geometric mean
Jensen–Shannon divergence
url http://www.mdpi.com/1099-4300/20/9/688
work_keys_str_mv AT albertno informationgeometricapproachonmostinformativebooleanfunctionconjecture