Sum of the triple divisor function of mixed powers

Let $ d_3(n) $ denote the 3-th divisor function. In this paper, we study the asymptotic formula of the sum $ \sum\limits_{\substack{1 \leqslant n_1,n_2 \leqslant X^{\frac{1}{2}} \\ 1 \leqslant n_3 \leqslant X^{\frac{1}{k}}}} d_3(n_1^2+n_2^2+n_3^k) $ with $ n_1, n_2, n_3\in \mathbb{Z}^+ $...

Full description

Bibliographic Details
Main Authors: Li Zhou, Liqun Hu
Format: Article
Language:English
Published: AIMS Press 2022-05-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2022713?viewType=HTML
_version_ 1828793353599188992
author Li Zhou
Liqun Hu
author_facet Li Zhou
Liqun Hu
author_sort Li Zhou
collection DOAJ
description Let $ d_3(n) $ denote the 3-th divisor function. In this paper, we study the asymptotic formula of the sum $ \sum\limits_{\substack{1 \leqslant n_1,n_2 \leqslant X^{\frac{1}{2}} \\ 1 \leqslant n_3 \leqslant X^{\frac{1}{k}}}} d_3(n_1^2+n_2^2+n_3^k) $ with $ n_1, n_2, n_3\in \mathbb{Z}^+ $ and $ k \geqslant 3 $ be an integer. Previously only the case of $ k=2 $ is studied.
first_indexed 2024-12-12T03:25:07Z
format Article
id doaj.art-89ccd7d84d4f48b78fe38493fa1514fb
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-12T03:25:07Z
publishDate 2022-05-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-89ccd7d84d4f48b78fe38493fa1514fb2022-12-22T00:40:04ZengAIMS PressAIMS Mathematics2473-69882022-05-0177128851289610.3934/math.2022713Sum of the triple divisor function of mixed powersLi Zhou0Liqun Hu11. Department of Mathematics, Nanchang University, Nanchang 330031, Jiangxi, China1. Department of Mathematics, Nanchang University, Nanchang 330031, Jiangxi, China 2. Institute of Mathematics and Interdisciplinary Sciences, Nanchang University, Nanchang 330031, Jiangxi, ChinaLet $ d_3(n) $ denote the 3-th divisor function. In this paper, we study the asymptotic formula of the sum $ \sum\limits_{\substack{1 \leqslant n_1,n_2 \leqslant X^{\frac{1}{2}} \\ 1 \leqslant n_3 \leqslant X^{\frac{1}{k}}}} d_3(n_1^2+n_2^2+n_3^k) $ with $ n_1, n_2, n_3\in \mathbb{Z}^+ $ and $ k \geqslant 3 $ be an integer. Previously only the case of $ k=2 $ is studied.https://www.aimspress.com/article/doi/10.3934/math.2022713?viewType=HTMLcircle methoddivisor problemasymptotic formulamixed powers
spellingShingle Li Zhou
Liqun Hu
Sum of the triple divisor function of mixed powers
AIMS Mathematics
circle method
divisor problem
asymptotic formula
mixed powers
title Sum of the triple divisor function of mixed powers
title_full Sum of the triple divisor function of mixed powers
title_fullStr Sum of the triple divisor function of mixed powers
title_full_unstemmed Sum of the triple divisor function of mixed powers
title_short Sum of the triple divisor function of mixed powers
title_sort sum of the triple divisor function of mixed powers
topic circle method
divisor problem
asymptotic formula
mixed powers
url https://www.aimspress.com/article/doi/10.3934/math.2022713?viewType=HTML
work_keys_str_mv AT lizhou sumofthetripledivisorfunctionofmixedpowers
AT liqunhu sumofthetripledivisorfunctionofmixedpowers