Large interlayer Dzyaloshinskii-Moriya interactions across Ag-layers

Abstract Seeking to enhance the strength of the interlayer Dzyaloshinskii-Moriya interaction (IL-DMI) through a combination of atomic and Rashba type spin-orbit coupling (SOC) we studied the strength and the thickness evolution of effective interlayer coupling in Co/Ag/Co trilayers by means of surfa...

Full description

Bibliographic Details
Main Authors: Jon Ander Arregi, Patricia Riego, Andreas Berger, Elena Y. Vedmedenko
Format: Article
Language:English
Published: Nature Portfolio 2023-10-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-42426-9
Description
Summary:Abstract Seeking to enhance the strength of the interlayer Dzyaloshinskii-Moriya interaction (IL-DMI) through a combination of atomic and Rashba type spin-orbit coupling (SOC) we studied the strength and the thickness evolution of effective interlayer coupling in Co/Ag/Co trilayers by means of surface sensitive magneto-optical measurements that take advantage of the light penetration depth. Here, we report the observation of oscillatory, thickness-dependent chiral interaction between ferromagnetic layers. Despite the weakness of the Ag atomic SOC, the IL-DMI in our trilayers is orders of magnitude larger than that of known systems using heavy metals as a spacer except of recently reported −0.15 mJ/m2 in Co/Pt/Ru(t)/Pt/Co and varies between ≈ ±0.2 mJ/m2. In contrast to known multilayers Co/Ag/Co promotes in-plane chirality between magnetic layers. The strength of IL-DMI opens up new routes for design of three-dimensional chiral spin structures combining intra- and interlayer DMI and paves the way for enhancements of the DMI strength.
ISSN:2041-1723