STCD-EffV2T Unet: Semi Transfer Learning EfficientNetV2 T-Unet Network for Urban/Land Cover Change Detection Using Sentinel-2 Satellite Images

Change detection in urban areas can be helpful for urban resource management and smart city planning. The effects of human activities on the environment and ground have gained momentum over the past decades, causing remote sensing data sources analysis (such as satellite images) to become an option...

Full description

Bibliographic Details
Main Authors: Masoomeh Gomroki, Mahdi Hasanlou, Peter Reinartz
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/5/1232
Description
Summary:Change detection in urban areas can be helpful for urban resource management and smart city planning. The effects of human activities on the environment and ground have gained momentum over the past decades, causing remote sensing data sources analysis (such as satellite images) to become an option for swift change detection in the environment and urban areas. We proposed a semi-transfer learning method of EfficientNetV2 T-Unet (EffV2 T-Unet) that combines the effectiveness of composite scaled EfficientNetV2 T as the first path or encoder for feature extraction and convolutional layers of Unet as the second path or decoder for reconstructing the binary change map. In the encoder path, we use EfficientNetV2 T, which was trained by the ImageNet dataset. In this research, we employ two datasets to evaluate the performance of our proposed method for binary change detection. The first dataset is Sentinel-2 satellite images which were captured in 2017 and 2021 in urban areas of northern Iran. The second one is the Onera Satellite Change Detection dataset (OSCD). The performance of the proposed method is compared with YoloX-Unet families, ResNest-Unet families, and other well-known methods. The results demonstrated our proposed method’s effectiveness compared to other methods. The final change map reached an overall accuracy of 97.66%.
ISSN:2072-4292