HİYERARŞİK KLUSTER (KÜME)TEKNİĞİ KULLANILARAK TÜRKİYE’DE İLLERİN SOSYO-EKONOMİK BENZERLİKLERİNİN ANALİZİ

In this study, 54 socio-economic variables were used to determine groups for Turkish provinces which represent similar characteristics. To achive this goal hierarchical cluster analyses was decided to be an appropirate statistical test. While doing determination of number of clusters for 81 province...

Full description

Bibliographic Details
Main Authors: Murat KARABULUT, Mehmet GÜRBÜZ, Ersin Kaya SANDAL
Format: Article
Language:English
Published: Ankara University 2004-08-01
Series:Coğrafi Bilimler Dergisi
Subjects:
Online Access:https://dergipark.org.tr/tr/pub/aucbd/issue/44490/551499
_version_ 1797832981136539648
author Murat KARABULUT
Mehmet GÜRBÜZ
Ersin Kaya SANDAL
author_facet Murat KARABULUT
Mehmet GÜRBÜZ
Ersin Kaya SANDAL
author_sort Murat KARABULUT
collection DOAJ
description In this study, 54 socio-economic variables were used to determine groups for Turkish provinces which represent similar characteristics. To achive this goal hierarchical cluster analyses was decided to be an appropirate statistical test. While doing determination of number of clusters for 81 provinces, the data set was tested with 7,10 and 15 clusters(groups). As a result of testing clustering processes, the group with 15 members was selected to use during analyses. The analyses were supported with dendogram and agglomerative schedule. Squared oklid distance and pearson proximity matrix were used to calculate distances between different provinces to find out province groups which have similar socio-economic character. The results indicate that, the most similar provinces are Bitlis and Mardin, and the least similar provinces are İstanbul and Kars. Consequently, this study is able to determine social and economical differences of Turkey’s provinces with aid of hierarchical cluster technique
first_indexed 2024-04-09T14:16:25Z
format Article
id doaj.art-89ee0423c1094eb2992368f5ac070175
institution Directory Open Access Journal
issn 1303-5851
1308-9765
language English
last_indexed 2024-04-09T14:16:25Z
publishDate 2004-08-01
publisher Ankara University
record_format Article
series Coğrafi Bilimler Dergisi
spelling doaj.art-89ee0423c1094eb2992368f5ac0701752023-05-05T07:18:30ZengAnkara UniversityCoğrafi Bilimler Dergisi1303-58511308-97652004-08-0122657810.1501/Cogbil_0000000043HİYERARŞİK KLUSTER (KÜME)TEKNİĞİ KULLANILARAK TÜRKİYE’DE İLLERİN SOSYO-EKONOMİK BENZERLİKLERİNİN ANALİZİMurat KARABULUT 0Mehmet GÜRBÜZ 1Ersin Kaya SANDAL2KSÜ Fen-Edebiyat Fakültesi, Coğrafya Bölümü, Kahraman Maraş KSÜ Fen-Edebiyat Fakültesi, Coğrafya Bölümü, Kahraman MaraşKSÜ Fen-Edebiyat Fakültesi, Coğrafya Bölümü, Kahraman Maraş In this study, 54 socio-economic variables were used to determine groups for Turkish provinces which represent similar characteristics. To achive this goal hierarchical cluster analyses was decided to be an appropirate statistical test. While doing determination of number of clusters for 81 provinces, the data set was tested with 7,10 and 15 clusters(groups). As a result of testing clustering processes, the group with 15 members was selected to use during analyses. The analyses were supported with dendogram and agglomerative schedule. Squared oklid distance and pearson proximity matrix were used to calculate distances between different provinces to find out province groups which have similar socio-economic character. The results indicate that, the most similar provinces are Bitlis and Mardin, and the least similar provinces are İstanbul and Kars. Consequently, this study is able to determine social and economical differences of Turkey’s provinces with aid of hierarchical cluster techniquehttps://dergipark.org.tr/tr/pub/aucbd/issue/44490/551499hierarchical cluster analysispearson proksimity matrixturkeyprovincessocio-economic regions
spellingShingle Murat KARABULUT
Mehmet GÜRBÜZ
Ersin Kaya SANDAL
HİYERARŞİK KLUSTER (KÜME)TEKNİĞİ KULLANILARAK TÜRKİYE’DE İLLERİN SOSYO-EKONOMİK BENZERLİKLERİNİN ANALİZİ
Coğrafi Bilimler Dergisi
hierarchical cluster analysis
pearson proksimity matrix
turkey
provinces
socio-economic regions
title HİYERARŞİK KLUSTER (KÜME)TEKNİĞİ KULLANILARAK TÜRKİYE’DE İLLERİN SOSYO-EKONOMİK BENZERLİKLERİNİN ANALİZİ
title_full HİYERARŞİK KLUSTER (KÜME)TEKNİĞİ KULLANILARAK TÜRKİYE’DE İLLERİN SOSYO-EKONOMİK BENZERLİKLERİNİN ANALİZİ
title_fullStr HİYERARŞİK KLUSTER (KÜME)TEKNİĞİ KULLANILARAK TÜRKİYE’DE İLLERİN SOSYO-EKONOMİK BENZERLİKLERİNİN ANALİZİ
title_full_unstemmed HİYERARŞİK KLUSTER (KÜME)TEKNİĞİ KULLANILARAK TÜRKİYE’DE İLLERİN SOSYO-EKONOMİK BENZERLİKLERİNİN ANALİZİ
title_short HİYERARŞİK KLUSTER (KÜME)TEKNİĞİ KULLANILARAK TÜRKİYE’DE İLLERİN SOSYO-EKONOMİK BENZERLİKLERİNİN ANALİZİ
title_sort hiyerarsik kluster kume teknigi kullanilarak turkiye de illerin sosyo ekonomik benzerliklerinin analizi
topic hierarchical cluster analysis
pearson proksimity matrix
turkey
provinces
socio-economic regions
url https://dergipark.org.tr/tr/pub/aucbd/issue/44490/551499
work_keys_str_mv AT muratkarabulut hiyerarsikklusterkumeteknigikullanilarakturkiyedeillerinsosyoekonomikbenzerliklerininanalizi
AT mehmetgurbuz hiyerarsikklusterkumeteknigikullanilarakturkiyedeillerinsosyoekonomikbenzerliklerininanalizi
AT ersinkayasandal hiyerarsikklusterkumeteknigikullanilarakturkiyedeillerinsosyoekonomikbenzerliklerininanalizi