Characterizing Situations of Dock Overload in Bicycle Sharing Stations

Bicycle sharing systems are becoming increasingly popular in cities around the world as they are an inexpensive and sustainable means of transportation. Promoting the use of these systems substantially improves the quality of life in cities by reducing pollutant emissions and traffic congestion. In...

Full description

Bibliographic Details
Main Authors: Luca Cagliero, Tania Cerquitelli, Silvia Chiusano, Paolo Garza, Giuseppe Ricupero, Elena Baralis
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/8/12/2521
Description
Summary:Bicycle sharing systems are becoming increasingly popular in cities around the world as they are an inexpensive and sustainable means of transportation. Promoting the use of these systems substantially improves the quality of life in cities by reducing pollutant emissions and traffic congestion. In these systems, bikes are made available for shared use to individuals on a short-term basis. They allow people to borrow a bike in one dock and return it to any other station with free docks belonging to the same system. The occupancy level of the stations can be constantly monitored. However, to achieve a satisfactory user experience, all the stations in the system must be neither overloaded nor empty when the user needs to access the station. The aim of this paper is to analyze occupancy level data acquired from real systems to determine situations of dock overload in multiple stations which could lead to service disruption. The proposed methodology relies on a pattern mining approach. A new pattern type called Occupancy Monitoring Pattern is proposed here to detect situations of dock overload in multiple stations. Since stations are geo-referenced and their occupancy levels are periodically monitored, occupancy patterns can be filtered and evaluated by taking into consideration both the spatial and temporal correlation of the acquired measurements. The results achieved on real data highlight the potential of the proposed methodology in supporting domain experts in their maintenance activities, such as periodic re-balancing of the occupancy levels of the stations, as well as in improving user experience by suggesting alternative stations in the nearby area.
ISSN:2076-3417