Fact and Fiction about 1%: Next Generation Sequencing and the Detection of Minor Drug Resistant Variants in HIV-1 Populations with and without Unique Molecular Identifiers

Next generation sequencing (NGS) platforms have the ability to generate almost limitless numbers of sequence reads starting with a PCR product. This gives the illusion that it is possible to analyze minor variants in a viral population. However, including a PCR step obscures the sampling depth of th...

Full description

Bibliographic Details
Main Authors: Shuntai Zhou, Ronald Swanstrom
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Viruses
Subjects:
Online Access:https://www.mdpi.com/1999-4915/12/8/850
Description
Summary:Next generation sequencing (NGS) platforms have the ability to generate almost limitless numbers of sequence reads starting with a PCR product. This gives the illusion that it is possible to analyze minor variants in a viral population. However, including a PCR step obscures the sampling depth of the viral population, the key parameter needed to understand the utility of the data set for finding minor variants. Also, these high throughput sequencing platforms are error prone at the level where minor variants are of interest, confounding the interpretation of detected minor variants. A simple strategy has been applied in multiple applications of NGS to solve these problems. Prior to PCR, individual molecules are “tagged” with a unique molecular identifier (UMI) that can be used to establish the actual sample size of viral genomes sequenced after PCR and sequencing. In addition, since PCR generates many copies of each sequence tagged to a specific UMI, a template consensus sequence (TCS) can be created from the many reads of each template, removing virtually all of the method error. From this perspective we examine our own use of a UMI, called Primer ID, in the detection of minor drug resistant variants in HIV-1 populations.
ISSN:1999-4915