LERMS: A Low-Latency and Reliable Downlink Packet-Level Encoding Transmission Method in Untrusted 5GA Edge Network

The increasing demand for end-to-end low-latency and high-reliability transmissions between edge computing nodes and user elements in 5G Advance edge networks has brought new challenges to the transmission of data. In response, this paper proposes LERMS, a packet-level encoding transmission scheme d...

Full description

Bibliographic Details
Main Authors: Zhongfu Guo, Xinsheng Ji, Wei You, Mingyan Xu, Yu Zhao, Zhimo Cheng, Deqiang Zhou, Lingwei Wang
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/7/966
Description
Summary:The increasing demand for end-to-end low-latency and high-reliability transmissions between edge computing nodes and user elements in 5G Advance edge networks has brought new challenges to the transmission of data. In response, this paper proposes LERMS, a packet-level encoding transmission scheme designed for untrusted 5GA edge networks that may encounter malicious transmission situations such as data tampering, discarding, and eavesdropping. LERMS achieves resiliency against such attacks by using 5GA Protocol data unit (PDU) coded Concurrent Multipath Transfer (CMT) based on Lagrangian interpolation and Raptor’s two-layer coding, which provides redundancy to eliminate the impact of an attacker’s malicious behavior. To mitigate the increased queuing delay resulting from encoding in data blocks, LERMS is queue-aware with variable block length. Its strategy is modeled as a Markov chain and optimized using a matrix method. Numerical results demonstrate that LERMS achieves the optimal trade-off between delay and reliability while providing resiliency against untrusted edge networks.
ISSN:1099-4300