Throughput-Efficient Dynamic Coalition Formation in Distributed Cognitive Radio Networks

<p/> <p>We formulate the problem of distributed throughput-efficient sensing in cognitive radio (CR) networks as a dynamic coalition formation game based on a Markovian model. The proposed coalition formation enables the CRs to increase their achievable throughput, under the detection pr...

Full description

Bibliographic Details
Main Authors: DaSilva LuizA, Khan Zaheer, Lehtom&#228;ki Janne, Codreanu Marian, Latva-aho Matti
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:EURASIP Journal on Wireless Communications and Networking
Online Access:http://jwcn.eurasipjournals.com/content/2010/653913
Description
Summary:<p/> <p>We formulate the problem of distributed throughput-efficient sensing in cognitive radio (CR) networks as a dynamic coalition formation game based on a Markovian model. The proposed coalition formation enables the CRs to increase their achievable throughput, under the detection probability constraint, while also taking into account the overhead in sensing reports combining. The dynamic model of coalition formation is used to express and model the behavior of the coalition forming CRs over time. In the proposed game, CRs form coalitions either to increase their individual gains (selfish coalition formation) or to maximize the overall gains of the group (altruistic coalition formation). We show that the proposed coalition formation solutions yield significant gains in terms of reduced average false alarm probability and increased average throughput per CR as compared to the non-cooperative solutions. Given a target detection probability for a coalition, we adopt a weighted target detection probability for individual CRs in a coalition. We find that the weighted target detection probability for individual CRs results in increased average throughput per CR as compared to when each CR is assigned the same target detection probability in a coalition.</p>
ISSN:1687-1472
1687-1499