Insighting Drivers of Population Exposure to Ambient Ozone (<i>O</i><sub>3</sub>) Concentrations across China Using a Spatiotemporal Causal Inference Method
Ground-level ozone (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></...
Main Authors: | Junming Li, Jing Xue, Jing Wei, Zhoupeng Ren, Yiming Yu, Huize An, Xingyan Yang, Yixue Yang |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-10-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/15/19/4871 |
Similar Items
-
Spatiotemporal Data Mining: A Computational Perspective
by: Shashi Shekhar, et al.
Published: (2015-10-01) -
Spatiotemporal Dynamics of Surface Ozone and Its Relationship with Meteorological Factors over the Beijing–Tianjin–Tangshan Region, China, from 2016 to 2019
by: Linyan Bai, et al.
Published: (2022-06-01) -
High-Spatiotemporal-Resolution Estimation of Ground-Level Ozone in China Based on Machine Learning
by: Jiahuan Chen, et al.
Published: (2023-12-01) -
Voxel modeling and association of ubiquitous spatiotemporal information in natural language texts
by: Dali Wang, et al.
Published: (2023-12-01) -
Spatiotemporal Variation, Driving Mechanism and Predictive Study of Total Column Ozone: A Case Study in the Yangtze River Delta Urban Agglomerations
by: Peng Zhou, et al.
Published: (2022-09-01)