Conductor Reconstruction for Dynamic Line Rating Using Vehicle-Mounted LiDAR

Dynamic Line Rating (DLR) is a process which electrical network operators can implement to improve efficiency by dynamically adjusting the load capacity as conditions allow. To implement DLR an accurate model of the conductors and their clearances is needed. Airborne LiDAR, while expensive, is the m...

Full description

Bibliographic Details
Main Authors: Josh McCulloch, Richard Green
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/22/3718
Description
Summary:Dynamic Line Rating (DLR) is a process which electrical network operators can implement to improve efficiency by dynamically adjusting the load capacity as conditions allow. To implement DLR an accurate model of the conductors and their clearances is needed. Airborne LiDAR, while expensive, is the most common method of collecting line data as it is fast and is of high quality. State of the art methods for automatically reconstructing conductors first classify conductor points before fitting conductor models. This approach works well for high tension lines with significant separation between conductors but tends to perform poorly in urban environments where conductors are packed tightly together and surrounded by clutter. The method presented in this article attempts to overcome these challenges by performing an informed search for the conductors, anchored to the utility poles. Before the conductors are classified, their layout and sag are estimated, converting conductor segmentation into a linear problem; and a 3D to 2D projection is used to improve density and simplify clustering. The work also attempts to reduce the cost of conductor reconstruction by utilising lower-cost vehicle-mounted LiDAR. By avoiding point classification, higher precision can be achieved in scenarios where previous methods have suffered from significantly degraded performance.
ISSN:2072-4292