Vanadium and Nickel Recovery from the Products of Heavy Petroleum Feedstock Processing: A Review

The steadily growing demand for non-ferrous metals, a shift to heavier crude oil recovery and tightened environmental standards have increased the importance of heavy petroleum feedstock (HPF) as a raw source of metals. This paper reviews the recent developments in the recovery of vanadium and nicke...

Full description

Bibliographic Details
Main Author: Aleksey Vishnyakov
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/13/6/1031
Description
Summary:The steadily growing demand for non-ferrous metals, a shift to heavier crude oil recovery and tightened environmental standards have increased the importance of heavy petroleum feedstock (HPF) as a raw source of metals. This paper reviews the recent developments in the recovery of vanadium and nickel from HPF. During crude oil processing and the application of its products, HPF is converted to various metal-enriched byproducts (“heavy oil”, petcoke, ashes and slags) from which the metals can be recovered. This paper briefly describes the sources and recovery pathways (both mainstream and exotic), and discusses the economic viability and possible future directions. Particular attention is paid to (i) the electrochemical recovery of metals from petrofluids and alternative approaches; (ii) pre-combustion metal recovery from petcoke; and (iii) metal reclamation from fly ash from heavy fuel oil or petroleum coke combustion: hydro- and pyro-metallurgical and bio-based techniques. The current stage of development and prospects for the future are evaluated for each method and summarized in the conclusion. Increasing research activity is mostly observed in traditional areas: metal extraction from fly ash and the reduction of metals from the ash to V–Fe and Ni–Fe alloys. Bioengineering approaches to recover vanadium from ashes are also actively developed and have the potential to become commercially viable in the future.
ISSN:2075-4701