Summary: | <h4>Introduction</h4>Previous work had shown that machine learning models can predict inflammatory bowel disease (IBD)-related hospitalizations and outpatient corticosteroid use based on patient demographic and laboratory data in a cohort of United States Veterans. This study aimed to replicate this modeling framework in a nationally representative cohort.<h4>Methods</h4>A retrospective cohort design using Optum Electronic Health Records (EHR) were used to identify IBD patients, with at least 12 months of follow-up between 2007 and 2018. IBD flare was defined as an inpatient/emergency visit with a diagnosis of IBD or an outpatient corticosteroid prescription for IBD. Predictors included demographic and laboratory data. Logistic regression and random forest (RF) models were used to predict IBD flare within 6 months of each visit. A 70% training and 30% validation approach was used.<h4>Results</h4>A total of 95,878 patients across 780,559 visits were identified. Of these, 22,245 (23.2%) patients had at least one IBD flare. Patients were predominantly White (87.7%) and female (57.1%), with a mean age of 48.0 years. The logistic regression model had an area under the receiver operating curve (AuROC) of 0.66 (95% CI: 0.65-0.66), sensitivity of 0.69 (95% CI: 0.68-0.70), and specificity of 0.74 (95% CI: 0.73-0.74) in the validation cohort. The RF model had an AuROC of 0.80 (95% CI: 0.80-0.81), sensitivity of 0.74 (95% CI: 0.73-0.74), and specificity of 0.72 (95% CI: 0.72-0.72) in the validation cohort. Important predictors of IBD flare in the RF model were the number of previous flares, age, potassium, and white blood cell count.<h4>Conclusion</h4>The machine learning modeling framework was replicated and results showed a similar predictive accuracy in a nationally representative cohort of IBD patients. This modeling framework could be embedded in routine practice as a tool to distinguish high-risk patients for disease activity.
|