Optimal Estimation of Parameters Encoded in Quantum Coherent State Quadratures
In the context of multiparameter quantum estimation theory, we investigate the construction of linear schemes in order to infer two classical parameters that are encoded in the quadratures of two quantum coherent states. The optimality of the scheme built on two phase-conjugate coherent states is pr...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-10-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/9/20/4264 |
_version_ | 1818999767807557632 |
---|---|
author | Matthieu Arnhem Evgueni Karpov Nicolas J. Cerf |
author_facet | Matthieu Arnhem Evgueni Karpov Nicolas J. Cerf |
author_sort | Matthieu Arnhem |
collection | DOAJ |
description | In the context of multiparameter quantum estimation theory, we investigate the construction of linear schemes in order to infer two classical parameters that are encoded in the quadratures of two quantum coherent states. The optimality of the scheme built on two phase-conjugate coherent states is proven with the saturation of the quantum Cramér−Rao bound under some global energy constraint. In a more general setting, we consider and analyze a variety of <i>n</i>-mode schemes that can be used to encode <i>n</i> classical parameters into <i>n</i> quantum coherent states and then estimate all parameters optimally and simultaneously. |
first_indexed | 2024-12-20T22:22:40Z |
format | Article |
id | doaj.art-8a4938af77a44fa9aac77653608a773d |
institution | Directory Open Access Journal |
issn | 2076-3417 |
language | English |
last_indexed | 2024-12-20T22:22:40Z |
publishDate | 2019-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Applied Sciences |
spelling | doaj.art-8a4938af77a44fa9aac77653608a773d2022-12-21T19:24:53ZengMDPI AGApplied Sciences2076-34172019-10-01920426410.3390/app9204264app9204264Optimal Estimation of Parameters Encoded in Quantum Coherent State QuadraturesMatthieu Arnhem0Evgueni Karpov1Nicolas J. Cerf2Centre for Quantum Information and Communication, Ecole polytechnique de Bruxelles, Université libre de Bruxelles, 1050 Brussels, BelgiumCentre for Quantum Information and Communication, Ecole polytechnique de Bruxelles, Université libre de Bruxelles, 1050 Brussels, BelgiumCentre for Quantum Information and Communication, Ecole polytechnique de Bruxelles, Université libre de Bruxelles, 1050 Brussels, BelgiumIn the context of multiparameter quantum estimation theory, we investigate the construction of linear schemes in order to infer two classical parameters that are encoded in the quadratures of two quantum coherent states. The optimality of the scheme built on two phase-conjugate coherent states is proven with the saturation of the quantum Cramér−Rao bound under some global energy constraint. In a more general setting, we consider and analyze a variety of <i>n</i>-mode schemes that can be used to encode <i>n</i> classical parameters into <i>n</i> quantum coherent states and then estimate all parameters optimally and simultaneously.https://www.mdpi.com/2076-3417/9/20/4264quantum estimation theoryquantum cramér–rao boundquantum fisher informationquantum opticsquantum coherent statesphase conjugation |
spellingShingle | Matthieu Arnhem Evgueni Karpov Nicolas J. Cerf Optimal Estimation of Parameters Encoded in Quantum Coherent State Quadratures Applied Sciences quantum estimation theory quantum cramér–rao bound quantum fisher information quantum optics quantum coherent states phase conjugation |
title | Optimal Estimation of Parameters Encoded in Quantum Coherent State Quadratures |
title_full | Optimal Estimation of Parameters Encoded in Quantum Coherent State Quadratures |
title_fullStr | Optimal Estimation of Parameters Encoded in Quantum Coherent State Quadratures |
title_full_unstemmed | Optimal Estimation of Parameters Encoded in Quantum Coherent State Quadratures |
title_short | Optimal Estimation of Parameters Encoded in Quantum Coherent State Quadratures |
title_sort | optimal estimation of parameters encoded in quantum coherent state quadratures |
topic | quantum estimation theory quantum cramér–rao bound quantum fisher information quantum optics quantum coherent states phase conjugation |
url | https://www.mdpi.com/2076-3417/9/20/4264 |
work_keys_str_mv | AT matthieuarnhem optimalestimationofparametersencodedinquantumcoherentstatequadratures AT evguenikarpov optimalestimationofparametersencodedinquantumcoherentstatequadratures AT nicolasjcerf optimalestimationofparametersencodedinquantumcoherentstatequadratures |