The Rearrangement Conjecture
The Rearrangement Conjecture states that if two words over $\mathbb{P}$ are Wilf-equivalent in the factor order on $\mathbb{P}^{\ast}$ then they are rearrangements of each other. We introduce the notion of strong Wilf-equivalence and prove that if two words over $\mathbb{P}$ are strongly Wilf-equiva...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Discrete Mathematics & Theoretical Computer Science
2014-01-01
|
Series: | Discrete Mathematics & Theoretical Computer Science |
Subjects: | |
Online Access: | https://dmtcs.episciences.org/2394/pdf |
Summary: | The Rearrangement Conjecture states that if two words over $\mathbb{P}$ are Wilf-equivalent in the factor order on $\mathbb{P}^{\ast}$ then they are rearrangements of each other. We introduce the notion of strong Wilf-equivalence and prove that if two words over $\mathbb{P}$ are strongly Wilf-equivalent then they are rearrangements of each other. We further conjecture that Wilf-equivalence implies strong Wilf-equivalence. |
---|---|
ISSN: | 1365-8050 |