The Rearrangement Conjecture
The Rearrangement Conjecture states that if two words over $\mathbb{P}$ are Wilf-equivalent in the factor order on $\mathbb{P}^{\ast}$ then they are rearrangements of each other. We introduce the notion of strong Wilf-equivalence and prove that if two words over $\mathbb{P}$ are strongly Wilf-equiva...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Discrete Mathematics & Theoretical Computer Science
2014-01-01
|
Series: | Discrete Mathematics & Theoretical Computer Science |
Subjects: | |
Online Access: | https://dmtcs.episciences.org/2394/pdf |
_version_ | 1797270292731527168 |
---|---|
author | Jay Pantone Vincent Vatter |
author_facet | Jay Pantone Vincent Vatter |
author_sort | Jay Pantone |
collection | DOAJ |
description | The Rearrangement Conjecture states that if two words over $\mathbb{P}$ are Wilf-equivalent in the factor order on $\mathbb{P}^{\ast}$ then they are rearrangements of each other. We introduce the notion of strong Wilf-equivalence and prove that if two words over $\mathbb{P}$ are strongly Wilf-equivalent then they are rearrangements of each other. We further conjecture that Wilf-equivalence implies strong Wilf-equivalence. |
first_indexed | 2024-04-25T02:01:57Z |
format | Article |
id | doaj.art-8a5d9199235843c6b573e0b38bbbdcfa |
institution | Directory Open Access Journal |
issn | 1365-8050 |
language | English |
last_indexed | 2024-04-25T02:01:57Z |
publishDate | 2014-01-01 |
publisher | Discrete Mathematics & Theoretical Computer Science |
record_format | Article |
series | Discrete Mathematics & Theoretical Computer Science |
spelling | doaj.art-8a5d9199235843c6b573e0b38bbbdcfa2024-03-07T14:53:18ZengDiscrete Mathematics & Theoretical Computer ScienceDiscrete Mathematics & Theoretical Computer Science1365-80502014-01-01DMTCS Proceedings vol. AT,...Proceedings10.46298/dmtcs.23942394The Rearrangement ConjectureJay Pantone0Vincent Vatter1Department of Mathematics [Gainesville]Department of Mathematics [Gainesville]The Rearrangement Conjecture states that if two words over $\mathbb{P}$ are Wilf-equivalent in the factor order on $\mathbb{P}^{\ast}$ then they are rearrangements of each other. We introduce the notion of strong Wilf-equivalence and prove that if two words over $\mathbb{P}$ are strongly Wilf-equivalent then they are rearrangements of each other. We further conjecture that Wilf-equivalence implies strong Wilf-equivalence.https://dmtcs.episciences.org/2394/pdfcompositiongeneralized factor orderwilf-equivalence[info.info-dm] computer science [cs]/discrete mathematics [cs.dm][math.math-co] mathematics [math]/combinatorics [math.co] |
spellingShingle | Jay Pantone Vincent Vatter The Rearrangement Conjecture Discrete Mathematics & Theoretical Computer Science composition generalized factor order wilf-equivalence [info.info-dm] computer science [cs]/discrete mathematics [cs.dm] [math.math-co] mathematics [math]/combinatorics [math.co] |
title | The Rearrangement Conjecture |
title_full | The Rearrangement Conjecture |
title_fullStr | The Rearrangement Conjecture |
title_full_unstemmed | The Rearrangement Conjecture |
title_short | The Rearrangement Conjecture |
title_sort | rearrangement conjecture |
topic | composition generalized factor order wilf-equivalence [info.info-dm] computer science [cs]/discrete mathematics [cs.dm] [math.math-co] mathematics [math]/combinatorics [math.co] |
url | https://dmtcs.episciences.org/2394/pdf |
work_keys_str_mv | AT jaypantone therearrangementconjecture AT vincentvatter therearrangementconjecture AT jaypantone rearrangementconjecture AT vincentvatter rearrangementconjecture |