The Rearrangement Conjecture

The Rearrangement Conjecture states that if two words over $\mathbb{P}$ are Wilf-equivalent in the factor order on $\mathbb{P}^{\ast}$ then they are rearrangements of each other. We introduce the notion of strong Wilf-equivalence and prove that if two words over $\mathbb{P}$ are strongly Wilf-equiva...

Full description

Bibliographic Details
Main Authors: Jay Pantone, Vincent Vatter
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2014-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/2394/pdf
_version_ 1797270292731527168
author Jay Pantone
Vincent Vatter
author_facet Jay Pantone
Vincent Vatter
author_sort Jay Pantone
collection DOAJ
description The Rearrangement Conjecture states that if two words over $\mathbb{P}$ are Wilf-equivalent in the factor order on $\mathbb{P}^{\ast}$ then they are rearrangements of each other. We introduce the notion of strong Wilf-equivalence and prove that if two words over $\mathbb{P}$ are strongly Wilf-equivalent then they are rearrangements of each other. We further conjecture that Wilf-equivalence implies strong Wilf-equivalence.
first_indexed 2024-04-25T02:01:57Z
format Article
id doaj.art-8a5d9199235843c6b573e0b38bbbdcfa
institution Directory Open Access Journal
issn 1365-8050
language English
last_indexed 2024-04-25T02:01:57Z
publishDate 2014-01-01
publisher Discrete Mathematics & Theoretical Computer Science
record_format Article
series Discrete Mathematics & Theoretical Computer Science
spelling doaj.art-8a5d9199235843c6b573e0b38bbbdcfa2024-03-07T14:53:18ZengDiscrete Mathematics & Theoretical Computer ScienceDiscrete Mathematics & Theoretical Computer Science1365-80502014-01-01DMTCS Proceedings vol. AT,...Proceedings10.46298/dmtcs.23942394The Rearrangement ConjectureJay Pantone0Vincent Vatter1Department of Mathematics [Gainesville]Department of Mathematics [Gainesville]The Rearrangement Conjecture states that if two words over $\mathbb{P}$ are Wilf-equivalent in the factor order on $\mathbb{P}^{\ast}$ then they are rearrangements of each other. We introduce the notion of strong Wilf-equivalence and prove that if two words over $\mathbb{P}$ are strongly Wilf-equivalent then they are rearrangements of each other. We further conjecture that Wilf-equivalence implies strong Wilf-equivalence.https://dmtcs.episciences.org/2394/pdfcompositiongeneralized factor orderwilf-equivalence[info.info-dm] computer science [cs]/discrete mathematics [cs.dm][math.math-co] mathematics [math]/combinatorics [math.co]
spellingShingle Jay Pantone
Vincent Vatter
The Rearrangement Conjecture
Discrete Mathematics & Theoretical Computer Science
composition
generalized factor order
wilf-equivalence
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
[math.math-co] mathematics [math]/combinatorics [math.co]
title The Rearrangement Conjecture
title_full The Rearrangement Conjecture
title_fullStr The Rearrangement Conjecture
title_full_unstemmed The Rearrangement Conjecture
title_short The Rearrangement Conjecture
title_sort rearrangement conjecture
topic composition
generalized factor order
wilf-equivalence
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
[math.math-co] mathematics [math]/combinatorics [math.co]
url https://dmtcs.episciences.org/2394/pdf
work_keys_str_mv AT jaypantone therearrangementconjecture
AT vincentvatter therearrangementconjecture
AT jaypantone rearrangementconjecture
AT vincentvatter rearrangementconjecture