Effects of Waterlogging on Nitrogen Fixation and Photosynthesis in Supernodulating Soybean Cultivar Kanto 100
The supernodulating soybean (Glycine max (L.) Merr.) cultivar Kanto 100 was previously characterized by superior nitrogen (N) fixation and photosynthesis, and resulting in high yields. However, this cultivar seems to be susceptible to waterlogging during the vegetative growth stage, which frequently...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2008-01-01
|
Series: | Plant Production Science |
Subjects: | |
Online Access: | http://dx.doi.org/10.1626/pps.11.291 |
_version_ | 1811316282603077632 |
---|---|
author | Gunho Jung Toshinori Matsunami Kenji Nagata Yukihiko Oki Makie Kokubun |
author_facet | Gunho Jung Toshinori Matsunami Kenji Nagata Yukihiko Oki Makie Kokubun |
author_sort | Gunho Jung |
collection | DOAJ |
description | The supernodulating soybean (Glycine max (L.) Merr.) cultivar Kanto 100 was previously characterized by superior nitrogen (N) fixation and photosynthesis, and resulting in high yields. However, this cultivar seems to be susceptible to waterlogging during the vegetative growth stage, which frequently occurs in major soybean producing areas in East Asia. The objective of this study was to compare the effects of waterlogging on nodulation, N fixation and photosynthesis in Kanto 100 with those in its normally-nodulating ancestral cultivar Enrei. Kanto 100 and Enrei were grown in pots, and subjected to waterlogging for 10 days at three vegetative growth stages in 2003 and 2004. Waterlogging significantly reduced the number of nodules of both cultivars, but the magnitude of the reduction was more pronounced in Kanto 100. The acetylene reduction activity (ARA) of nodules and apparent photosynthetic rate (AP) of leaves were generally depressed immediately after the start of waterlogging, but both functions recovered substantially at the pod-filling stage in both cultivars. No marked cultivar difference was found in the magnitude of the reduction of ARA per plant and AP measured immediately after waterlogging and at the pod-filling stage in both years, but growth impairment was more pronounced in Kanto 100 in 2003. These results suggest that the supernodulating cultivar Kanto 100 is more susceptible to waterlogging than its normally-nodulating ancestral cultivar. |
first_indexed | 2024-04-13T11:46:11Z |
format | Article |
id | doaj.art-8a6efb8b6cc24f558a8a33ff1625a286 |
institution | Directory Open Access Journal |
issn | 1343-943X 1349-1008 |
language | English |
last_indexed | 2024-04-13T11:46:11Z |
publishDate | 2008-01-01 |
publisher | Taylor & Francis Group |
record_format | Article |
series | Plant Production Science |
spelling | doaj.art-8a6efb8b6cc24f558a8a33ff1625a2862022-12-22T02:48:10ZengTaylor & Francis GroupPlant Production Science1343-943X1349-10082008-01-0111329129710.1626/pps.11.29111644905Effects of Waterlogging on Nitrogen Fixation and Photosynthesis in Supernodulating Soybean Cultivar Kanto 100Gunho Jung0Toshinori Matsunami1Kenji Nagata2Yukihiko Oki3Makie Kokubun4Tohoku UniversityTohoku UniversityTohoku UniversityTohoku UniversityTohoku UniversityThe supernodulating soybean (Glycine max (L.) Merr.) cultivar Kanto 100 was previously characterized by superior nitrogen (N) fixation and photosynthesis, and resulting in high yields. However, this cultivar seems to be susceptible to waterlogging during the vegetative growth stage, which frequently occurs in major soybean producing areas in East Asia. The objective of this study was to compare the effects of waterlogging on nodulation, N fixation and photosynthesis in Kanto 100 with those in its normally-nodulating ancestral cultivar Enrei. Kanto 100 and Enrei were grown in pots, and subjected to waterlogging for 10 days at three vegetative growth stages in 2003 and 2004. Waterlogging significantly reduced the number of nodules of both cultivars, but the magnitude of the reduction was more pronounced in Kanto 100. The acetylene reduction activity (ARA) of nodules and apparent photosynthetic rate (AP) of leaves were generally depressed immediately after the start of waterlogging, but both functions recovered substantially at the pod-filling stage in both cultivars. No marked cultivar difference was found in the magnitude of the reduction of ARA per plant and AP measured immediately after waterlogging and at the pod-filling stage in both years, but growth impairment was more pronounced in Kanto 100 in 2003. These results suggest that the supernodulating cultivar Kanto 100 is more susceptible to waterlogging than its normally-nodulating ancestral cultivar.http://dx.doi.org/10.1626/pps.11.291Glycine maxNitrogen fixationPhotosynthesisSoybeanSupernodulationWaterlogging. |
spellingShingle | Gunho Jung Toshinori Matsunami Kenji Nagata Yukihiko Oki Makie Kokubun Effects of Waterlogging on Nitrogen Fixation and Photosynthesis in Supernodulating Soybean Cultivar Kanto 100 Plant Production Science Glycine max Nitrogen fixation Photosynthesis Soybean Supernodulation Waterlogging. |
title | Effects of Waterlogging on Nitrogen Fixation and Photosynthesis in Supernodulating Soybean Cultivar Kanto 100 |
title_full | Effects of Waterlogging on Nitrogen Fixation and Photosynthesis in Supernodulating Soybean Cultivar Kanto 100 |
title_fullStr | Effects of Waterlogging on Nitrogen Fixation and Photosynthesis in Supernodulating Soybean Cultivar Kanto 100 |
title_full_unstemmed | Effects of Waterlogging on Nitrogen Fixation and Photosynthesis in Supernodulating Soybean Cultivar Kanto 100 |
title_short | Effects of Waterlogging on Nitrogen Fixation and Photosynthesis in Supernodulating Soybean Cultivar Kanto 100 |
title_sort | effects of waterlogging on nitrogen fixation and photosynthesis in supernodulating soybean cultivar kanto 100 |
topic | Glycine max Nitrogen fixation Photosynthesis Soybean Supernodulation Waterlogging. |
url | http://dx.doi.org/10.1626/pps.11.291 |
work_keys_str_mv | AT gunhojung effectsofwaterloggingonnitrogenfixationandphotosynthesisinsupernodulatingsoybeancultivarkanto100 AT toshinorimatsunami effectsofwaterloggingonnitrogenfixationandphotosynthesisinsupernodulatingsoybeancultivarkanto100 AT kenjinagata effectsofwaterloggingonnitrogenfixationandphotosynthesisinsupernodulatingsoybeancultivarkanto100 AT yukihikooki effectsofwaterloggingonnitrogenfixationandphotosynthesisinsupernodulatingsoybeancultivarkanto100 AT makiekokubun effectsofwaterloggingonnitrogenfixationandphotosynthesisinsupernodulatingsoybeancultivarkanto100 |