On the Onset of Taylor Vortices in Finite-Length Cavity Subject to a Radial Oscillation Motion

Taylor- Couette flow (TCF) is an important template for studying various mechanisms of the laminar-turbulent transition of rotating fluid in enclosed cavity. It is also relevant to engineering applications like bearings, fluid mixing and filtration. Furthermore, this flow system is of potential impo...

Full description

Bibliographic Details
Main Authors: Adel Lalaoua, a. Bouabdallah
Format: Article
Language:English
Published: Isfahan University of Technology 2016-01-01
Series:Journal of Applied Fluid Mechanics
Subjects:
Online Access:http://jafmonline.net/JournalArchive/download?file_ID=40273&issue_ID=235
Description
Summary:Taylor- Couette flow (TCF) is an important template for studying various mechanisms of the laminar-turbulent transition of rotating fluid in enclosed cavity. It is also relevant to engineering applications like bearings, fluid mixing and filtration. Furthermore, this flow system is of potential importance for development of bio-separators employing Taylor vortices for enhancement of mass transfer. The fluid flowing in the annular gap between two rotating cylinders has been used as paradigm for the hydrodynamic stability theory and the transition to turbulence. In this paper, the fluid in an annulus between short concentric cylinders is investigated numerically for a three dimensional viscous and incompressible flow. The inner cylinder rotates freely about a vertical axis through its centre while the outer cylinder is held stationary and oscillating radially. The main purpose is to examine the effect of a pulsatile motion of the outer cylinder on the onset of Taylor vortices in the vicinity of the threshold of transition, i.e., from the laminar Couette flow to the occurrence of Taylor vortex flow. The numerical results obtained here show significant topological changes on the Taylor vortices. In addition, the active control deeply affects the occurrence of the first instability. It is established that the appearance of the Taylor vortex flow is then substantially delayed with respect to the classical case; flow without control.
ISSN:1735-3572