Liquid Argon Instrumentation and Monitoring in LEGEND-200

LEGEND is the next-generation experiment searching for the neutrinoless double beta decay in 76Ge. The first stage, LEGEND-200, takes over the cryogenic infrastructure of GERDA at LNGS: an instrumented water tank surrounding a 64 m3 liquid argon cryostat. Around 200 kg of Ge detectors will be deploy...

Full description

Bibliographic Details
Main Authors: Schwarz Mario, Krause Patrick, Leonhardt Andreas, Papp Laszlo, Schönert Stefan, Wiesinger Christoph, Fomina Maria, Gusev Konstantin, Rumyantseva Nadezda, Shevchik Egor, Zinatulina Daniya, Araujo Gabriela R.
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:EPJ Web of Conferences
Subjects:
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2021/07/epjconf_animma2021_11014.pdf
Description
Summary:LEGEND is the next-generation experiment searching for the neutrinoless double beta decay in 76Ge. The first stage, LEGEND-200, takes over the cryogenic infrastructure of GERDA at LNGS: an instrumented water tank surrounding a 64 m3 liquid argon cryostat. Around 200 kg of Ge detectors will be deployed in the cryostat, with the liquid argon acting as cooling medium, high-purity passive shielding and secondary detection medium. For the latter purpose, a liquid argon instrumentation is developed, based on the system used in GERDA Phase II. Wavelength shifting fibers coated with TPB are arranged in two concentric barrels. Both ends are read out by SiPM arrays. A wavelength shifting reflector surrounds the array in order to enhance the light collection far from the array. The LLAMA is installed in the cryostat to permanently monitor the optical parameters and to provide in-situ inputs for modeling purposes. The design of all parts of the LEGEND-200 LAr instrumentation is presented. An overview of the geometry, operation principle, and off-line data analysis of the LLAMA is shown.
ISSN:2100-014X