Summary: | Nanoswimmers are synthetic nanoscale objects that convert the available surrounding free energy to a directed motion. For example, bacteria with various flagella types serve as textbook examples of the minuscule swimmers found in nature. Along these lines, a plethora of artificial hybrid and non-hybrid nanoswimmers have been introduced, and they could find many uses, e.g., for targeted drug delivery systems (TDDSs) and controlled drug treatments. Here, we discuss a certain class of nanoparticles, i.e., functional, capped Janus nanospheres that can be employed as nanoswimmers, their subclasses and properties, as well as their various implementations. A brief outlook is given on different fabrication and synthesis methods, as well as on the diverse compositions used to prepare nanoswimmers, with a focus on the particle types and materials suitable for biomedical applications. Several recent studies have shown remarkable success in achieving temporally and spatially controlled drug delivery in vitro using Janus-particle-based TDDSs. We believe that this review will serve as a concise introductory synopsis for the interested readers. Therefore, we hope that it will deepen the general understanding of nanoparticle behavior in biological matrices.
|