Synthesis of Hexagonal Nanophases in the La<sub>2</sub>O<sub>3</sub>–MO<sub>3</sub> (M = Mo, W) Systems

We report a study of nanophases in the La<sub>2</sub>O<sub>3</sub>–MO<sub>3</sub> (M = Mo, W) systems, which are known to contain a variety of good oxygen-ion and proton conductors. Mechanically activated La<sub>2</sub>O<sub>3</sub> + MO<...

Full description

Bibliographic Details
Main Authors: Egor Baldin, Nikolay Lyskov, Galina Vorobieva, Igor Kolbanev, Olga Karyagina, Dmitry Stolbov, Valentina Voronkova, Anna Shlyakhtina
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/15/5637
_version_ 1797586816944046080
author Egor Baldin
Nikolay Lyskov
Galina Vorobieva
Igor Kolbanev
Olga Karyagina
Dmitry Stolbov
Valentina Voronkova
Anna Shlyakhtina
author_facet Egor Baldin
Nikolay Lyskov
Galina Vorobieva
Igor Kolbanev
Olga Karyagina
Dmitry Stolbov
Valentina Voronkova
Anna Shlyakhtina
author_sort Egor Baldin
collection DOAJ
description We report a study of nanophases in the La<sub>2</sub>O<sub>3</sub>–MO<sub>3</sub> (M = Mo, W) systems, which are known to contain a variety of good oxygen-ion and proton conductors. Mechanically activated La<sub>2</sub>O<sub>3</sub> + MO<sub>3</sub> (M = Mo, W) mixtures and the final ceramics have been characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) with Rietveld refinement. The microstructure of the materials has been examined by scanning electron microscopy (SEM), and their conductivity in dry and wet air has been determined using impedance spectroscopy. In both systems, the formation of hexagonal La<sub>15</sub>M<sub>8.5</sub>O<sub>48</sub> (phase II, 5H polytype) (M = Mo, W) nanophases is observed for the composition 1:1, with exothermic peaks in the DSC curve in the range ~480–520 °C for La<sub>15</sub>Mo<sub>8.5</sub>O<sub>48</sub> and ~685–760 °C for La<sub>15</sub>W<sub>8.5</sub>O<sub>48</sub>, respectively. The crystallite size of the nanocrystalline tungstates is ~40 nm, and that of the nanocrystalline molybdates is ~50 nm. At higher temperatures (~630–690 and ~1000 °C), we observe irreversible reconstructive phase transitions of hexagonal La<sub>15</sub>Mo<sub>8.5</sub>O<sub>48</sub> to tetragonal γ-La<sub>2</sub>MoO<sub>6</sub> and of hexagonal La<sub>15</sub>W<sub>8.5</sub>O<sub>48</sub> to orthorhombic β-La<sub>2</sub>WO<sub>6</sub>. We compare the temperature dependences of conductivity for nanoparticulate and microcrystalline hexagonal phases and high-temperature phases differing in density. Above 600 °C, oxygen ion conduction prevails in the coarse-grained La<sub>18</sub>W<sub>10</sub>O<sub>57</sub> (phase I, 6H polytype) ceramic. Low-density La<sub>15</sub>W<sub>8.5</sub>O<sub>48</sub> and La<sub>15</sub>Mo<sub>8.5</sub>O<sub>48</sub> (phase II, 5H polytype) nanoceramics exhibit predominantly electron conduction with an activation energy of 1.36 and 1.35 eV, respectively, in dry air.
first_indexed 2024-03-11T00:28:32Z
format Article
id doaj.art-8a8e66c4cab846acb97644f36e5d1c44
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-03-11T00:28:32Z
publishDate 2023-07-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-8a8e66c4cab846acb97644f36e5d1c442023-11-18T22:50:52ZengMDPI AGEnergies1996-10732023-07-011615563710.3390/en16155637Synthesis of Hexagonal Nanophases in the La<sub>2</sub>O<sub>3</sub>–MO<sub>3</sub> (M = Mo, W) SystemsEgor Baldin0Nikolay Lyskov1Galina Vorobieva2Igor Kolbanev3Olga Karyagina4Dmitry Stolbov5Valentina Voronkova6Anna Shlyakhtina7N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, RussiaFederal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka, Moscow 142432, RussiaN.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, RussiaN.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, RussiaEmanuel Institute of Biochemical Physics RAS, Russian Academy of Sciences, Moscow 119334, RussiaDepartment of Chemistry, Lomonosov Moscow State University, Moscow 119991, RussiaDepartment of Physics, Lomonosov Moscow State University, Moscow 119991, RussiaN.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, RussiaWe report a study of nanophases in the La<sub>2</sub>O<sub>3</sub>–MO<sub>3</sub> (M = Mo, W) systems, which are known to contain a variety of good oxygen-ion and proton conductors. Mechanically activated La<sub>2</sub>O<sub>3</sub> + MO<sub>3</sub> (M = Mo, W) mixtures and the final ceramics have been characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) with Rietveld refinement. The microstructure of the materials has been examined by scanning electron microscopy (SEM), and their conductivity in dry and wet air has been determined using impedance spectroscopy. In both systems, the formation of hexagonal La<sub>15</sub>M<sub>8.5</sub>O<sub>48</sub> (phase II, 5H polytype) (M = Mo, W) nanophases is observed for the composition 1:1, with exothermic peaks in the DSC curve in the range ~480–520 °C for La<sub>15</sub>Mo<sub>8.5</sub>O<sub>48</sub> and ~685–760 °C for La<sub>15</sub>W<sub>8.5</sub>O<sub>48</sub>, respectively. The crystallite size of the nanocrystalline tungstates is ~40 nm, and that of the nanocrystalline molybdates is ~50 nm. At higher temperatures (~630–690 and ~1000 °C), we observe irreversible reconstructive phase transitions of hexagonal La<sub>15</sub>Mo<sub>8.5</sub>O<sub>48</sub> to tetragonal γ-La<sub>2</sub>MoO<sub>6</sub> and of hexagonal La<sub>15</sub>W<sub>8.5</sub>O<sub>48</sub> to orthorhombic β-La<sub>2</sub>WO<sub>6</sub>. We compare the temperature dependences of conductivity for nanoparticulate and microcrystalline hexagonal phases and high-temperature phases differing in density. Above 600 °C, oxygen ion conduction prevails in the coarse-grained La<sub>18</sub>W<sub>10</sub>O<sub>57</sub> (phase I, 6H polytype) ceramic. Low-density La<sub>15</sub>W<sub>8.5</sub>O<sub>48</sub> and La<sub>15</sub>Mo<sub>8.5</sub>O<sub>48</sub> (phase II, 5H polytype) nanoceramics exhibit predominantly electron conduction with an activation energy of 1.36 and 1.35 eV, respectively, in dry air.https://www.mdpi.com/1996-1073/16/15/5637mechanochemical synthesisnanomaterialslanthanum tungstatelanthanum molybdatepolytypismoxygen ion conductivity
spellingShingle Egor Baldin
Nikolay Lyskov
Galina Vorobieva
Igor Kolbanev
Olga Karyagina
Dmitry Stolbov
Valentina Voronkova
Anna Shlyakhtina
Synthesis of Hexagonal Nanophases in the La<sub>2</sub>O<sub>3</sub>–MO<sub>3</sub> (M = Mo, W) Systems
Energies
mechanochemical synthesis
nanomaterials
lanthanum tungstate
lanthanum molybdate
polytypism
oxygen ion conductivity
title Synthesis of Hexagonal Nanophases in the La<sub>2</sub>O<sub>3</sub>–MO<sub>3</sub> (M = Mo, W) Systems
title_full Synthesis of Hexagonal Nanophases in the La<sub>2</sub>O<sub>3</sub>–MO<sub>3</sub> (M = Mo, W) Systems
title_fullStr Synthesis of Hexagonal Nanophases in the La<sub>2</sub>O<sub>3</sub>–MO<sub>3</sub> (M = Mo, W) Systems
title_full_unstemmed Synthesis of Hexagonal Nanophases in the La<sub>2</sub>O<sub>3</sub>–MO<sub>3</sub> (M = Mo, W) Systems
title_short Synthesis of Hexagonal Nanophases in the La<sub>2</sub>O<sub>3</sub>–MO<sub>3</sub> (M = Mo, W) Systems
title_sort synthesis of hexagonal nanophases in the la sub 2 sub o sub 3 sub mo sub 3 sub m mo w systems
topic mechanochemical synthesis
nanomaterials
lanthanum tungstate
lanthanum molybdate
polytypism
oxygen ion conductivity
url https://www.mdpi.com/1996-1073/16/15/5637
work_keys_str_mv AT egorbaldin synthesisofhexagonalnanophasesinthelasub2subosub3submosub3submmowsystems
AT nikolaylyskov synthesisofhexagonalnanophasesinthelasub2subosub3submosub3submmowsystems
AT galinavorobieva synthesisofhexagonalnanophasesinthelasub2subosub3submosub3submmowsystems
AT igorkolbanev synthesisofhexagonalnanophasesinthelasub2subosub3submosub3submmowsystems
AT olgakaryagina synthesisofhexagonalnanophasesinthelasub2subosub3submosub3submmowsystems
AT dmitrystolbov synthesisofhexagonalnanophasesinthelasub2subosub3submosub3submmowsystems
AT valentinavoronkova synthesisofhexagonalnanophasesinthelasub2subosub3submosub3submmowsystems
AT annashlyakhtina synthesisofhexagonalnanophasesinthelasub2subosub3submosub3submmowsystems