Impacts of oak deforestation and rainfed cultivation on soil redistribution processes across hillslopes using 137Cs techniques
Abstract Background As one of the main components of land-use change, deforestation is considered the greatest threat to global environmental diversity with possible irreversible environmental consequences. Specifically, one example could be the impacts of land-use changes from oak forests into agri...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
KeAi Communications Co., Ltd.
2021-05-01
|
Series: | Forest Ecosystems |
Subjects: | |
Online Access: | https://doi.org/10.1186/s40663-021-00311-1 |
_version_ | 1797972117316173824 |
---|---|
author | Shamsollah Ayoubi Nafiseh Sadeghi Farideh Abbaszadeh Afshar Mohammad Reza Abdi Mojtaba Zeraatpisheh Jesus Rodrigo-Comino |
author_facet | Shamsollah Ayoubi Nafiseh Sadeghi Farideh Abbaszadeh Afshar Mohammad Reza Abdi Mojtaba Zeraatpisheh Jesus Rodrigo-Comino |
author_sort | Shamsollah Ayoubi |
collection | DOAJ |
description | Abstract Background As one of the main components of land-use change, deforestation is considered the greatest threat to global environmental diversity with possible irreversible environmental consequences. Specifically, one example could be the impacts of land-use changes from oak forests into agricultural ecosystems, which may have detrimental impacts on soil mobilization across hillslopes. However, to date, scarce studies are assessing these impacts at different slope positions and soil depths, shedding light on key geomorphological processes. Methods In this research, the Caesium-137 (137Cs) technique was applied to evaluate soil redistribution and soil erosion rates due to the effects of these above-mentioned land-use changes. To achieve this goal, we select a representative area in the Lordegan district, central Iran. 137Cs depth distribution profiles were established in four different hillslope positions after converting natural oak forests to rainfed farming. In each hillslope, soil samples from three depths (0–10, 10–20, and 20–50 cm) and in four different slope positions (summit, shoulder, backslope, and footslope) were taken in three transects of about 20 m away from each other. The activity of 137Cs was determined in all the soil samples (72 soil samples) by a gamma spectrometer. In addition, some physicochemical properties and the magnetic susceptibility (MS) of soil samples were measured. Results Erosion rates reached 51.1 t·ha− 1·yr− 1 in rainfed farming, whereas in the natural forest, the erosion rate was 9.3 t·ha− 1·yr− 1. Magnetic susceptibility was considerably lower in the cultivated land (χ hf = 43.5 × 10− 8 m3·kg− 1) than in the natural forest (χ hf = 55.1 × 10− 8 m3·kg− 1). The lower soil erosion rate in the natural forest land indicated significantly higher MS in all landform positions except at the summit one, compared to that in the rainfed farming land. The shoulder and summit positions were the most erodible hillslope positions in the natural forest and rainfed farming, respectively. Conclusions We concluded that land-use change and hillslope positions played a key role in eroding the surface soils in this area. Moreover, land management can influence soil erosion intensity and may both mitigate and amplify soil loss. |
first_indexed | 2024-04-11T03:43:22Z |
format | Article |
id | doaj.art-8a910f62711a4834a39d79073a10b3ab |
institution | Directory Open Access Journal |
issn | 2197-5620 |
language | English |
last_indexed | 2024-04-11T03:43:22Z |
publishDate | 2021-05-01 |
publisher | KeAi Communications Co., Ltd. |
record_format | Article |
series | Forest Ecosystems |
spelling | doaj.art-8a910f62711a4834a39d79073a10b3ab2023-01-02T03:19:39ZengKeAi Communications Co., Ltd.Forest Ecosystems2197-56202021-05-018111410.1186/s40663-021-00311-1Impacts of oak deforestation and rainfed cultivation on soil redistribution processes across hillslopes using 137Cs techniquesShamsollah Ayoubi0Nafiseh Sadeghi1Farideh Abbaszadeh Afshar2Mohammad Reza Abdi3Mojtaba Zeraatpisheh4Jesus Rodrigo-Comino5Department of Soil Science, College of Agriculture, Isfahan University of TechnologyDepartment of Soil Science, College of Agriculture, Isfahan University of TechnologyDepartment of Soil Science, College of Agriculture, University of JiroftDepartment of Physics, Faculty of Science, University of IsfahanHenan Key Laboratory of Earth System Observation and Modeling, Henan UniversityDepartment of Physical Geography, University of TrierAbstract Background As one of the main components of land-use change, deforestation is considered the greatest threat to global environmental diversity with possible irreversible environmental consequences. Specifically, one example could be the impacts of land-use changes from oak forests into agricultural ecosystems, which may have detrimental impacts on soil mobilization across hillslopes. However, to date, scarce studies are assessing these impacts at different slope positions and soil depths, shedding light on key geomorphological processes. Methods In this research, the Caesium-137 (137Cs) technique was applied to evaluate soil redistribution and soil erosion rates due to the effects of these above-mentioned land-use changes. To achieve this goal, we select a representative area in the Lordegan district, central Iran. 137Cs depth distribution profiles were established in four different hillslope positions after converting natural oak forests to rainfed farming. In each hillslope, soil samples from three depths (0–10, 10–20, and 20–50 cm) and in four different slope positions (summit, shoulder, backslope, and footslope) were taken in three transects of about 20 m away from each other. The activity of 137Cs was determined in all the soil samples (72 soil samples) by a gamma spectrometer. In addition, some physicochemical properties and the magnetic susceptibility (MS) of soil samples were measured. Results Erosion rates reached 51.1 t·ha− 1·yr− 1 in rainfed farming, whereas in the natural forest, the erosion rate was 9.3 t·ha− 1·yr− 1. Magnetic susceptibility was considerably lower in the cultivated land (χ hf = 43.5 × 10− 8 m3·kg− 1) than in the natural forest (χ hf = 55.1 × 10− 8 m3·kg− 1). The lower soil erosion rate in the natural forest land indicated significantly higher MS in all landform positions except at the summit one, compared to that in the rainfed farming land. The shoulder and summit positions were the most erodible hillslope positions in the natural forest and rainfed farming, respectively. Conclusions We concluded that land-use change and hillslope positions played a key role in eroding the surface soils in this area. Moreover, land management can influence soil erosion intensity and may both mitigate and amplify soil loss.https://doi.org/10.1186/s40663-021-00311-1Land-use changeSoil redistributionTopographical changesRadionuclideRainfed farmingDeforestation |
spellingShingle | Shamsollah Ayoubi Nafiseh Sadeghi Farideh Abbaszadeh Afshar Mohammad Reza Abdi Mojtaba Zeraatpisheh Jesus Rodrigo-Comino Impacts of oak deforestation and rainfed cultivation on soil redistribution processes across hillslopes using 137Cs techniques Forest Ecosystems Land-use change Soil redistribution Topographical changes Radionuclide Rainfed farming Deforestation |
title | Impacts of oak deforestation and rainfed cultivation on soil redistribution processes across hillslopes using 137Cs techniques |
title_full | Impacts of oak deforestation and rainfed cultivation on soil redistribution processes across hillslopes using 137Cs techniques |
title_fullStr | Impacts of oak deforestation and rainfed cultivation on soil redistribution processes across hillslopes using 137Cs techniques |
title_full_unstemmed | Impacts of oak deforestation and rainfed cultivation on soil redistribution processes across hillslopes using 137Cs techniques |
title_short | Impacts of oak deforestation and rainfed cultivation on soil redistribution processes across hillslopes using 137Cs techniques |
title_sort | impacts of oak deforestation and rainfed cultivation on soil redistribution processes across hillslopes using 137cs techniques |
topic | Land-use change Soil redistribution Topographical changes Radionuclide Rainfed farming Deforestation |
url | https://doi.org/10.1186/s40663-021-00311-1 |
work_keys_str_mv | AT shamsollahayoubi impactsofoakdeforestationandrainfedcultivationonsoilredistributionprocessesacrosshillslopesusing137cstechniques AT nafisehsadeghi impactsofoakdeforestationandrainfedcultivationonsoilredistributionprocessesacrosshillslopesusing137cstechniques AT faridehabbaszadehafshar impactsofoakdeforestationandrainfedcultivationonsoilredistributionprocessesacrosshillslopesusing137cstechniques AT mohammadrezaabdi impactsofoakdeforestationandrainfedcultivationonsoilredistributionprocessesacrosshillslopesusing137cstechniques AT mojtabazeraatpisheh impactsofoakdeforestationandrainfedcultivationonsoilredistributionprocessesacrosshillslopesusing137cstechniques AT jesusrodrigocomino impactsofoakdeforestationandrainfedcultivationonsoilredistributionprocessesacrosshillslopesusing137cstechniques |