Chaotic tracial dynamics

The action on the trace space induced by a generic automorphism of a suitable finite classifiable ${\mathrm {C}^*}$ -algebra is shown to be chaotic and weakly mixing. Model ${\mathrm {C}^*}$ -algebras are constructed to observe the central limit theorem and other statistical features of...

Full description

Bibliographic Details
Main Author: Bhishan Jacelon
Format: Article
Language:English
Published: Cambridge University Press 2023-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509423000385/type/journal_article
Description
Summary:The action on the trace space induced by a generic automorphism of a suitable finite classifiable ${\mathrm {C}^*}$ -algebra is shown to be chaotic and weakly mixing. Model ${\mathrm {C}^*}$ -algebras are constructed to observe the central limit theorem and other statistical features of strongly chaotic tracial actions. Genericity of finite Rokhlin dimension is used to describe $KK$ -contractible stably projectionless ${\mathrm {C}^*}$ -algebras as crossed products.
ISSN:2050-5094