A Physically-Motivated Quantisation of the Electromagnetic Field on Curved Spacetimes

Recently, Bennett et al. (Eur. J. Phys. <b>37</b>:014001, 2016) presented a physically-motivated and explicitly gauge-independent scheme for the quantisation of the electromagnetic field in flat Minkowski space. In this paper we generalise this field quantisation scheme to curved spaceti...

Full description

Bibliographic Details
Main Authors: Ben Maybee, Daniel Hodgson, Almut Beige, Robert Purdy
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/21/9/844
_version_ 1798004862794858496
author Ben Maybee
Daniel Hodgson
Almut Beige
Robert Purdy
author_facet Ben Maybee
Daniel Hodgson
Almut Beige
Robert Purdy
author_sort Ben Maybee
collection DOAJ
description Recently, Bennett et al. (Eur. J. Phys. <b>37</b>:014001, 2016) presented a physically-motivated and explicitly gauge-independent scheme for the quantisation of the electromagnetic field in flat Minkowski space. In this paper we generalise this field quantisation scheme to curved spacetimes. Working within the standard assumptions of quantum field theory and only postulating the physicality of the photon, we derive the Hamiltonian, <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi>H</mi> <mo stretchy="false">^</mo> </mover> </semantics> </math> </inline-formula>, and the electric and magnetic field observables, <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi mathvariant="bold">E</mi> <mo stretchy="false">^</mo> </mover> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi mathvariant="bold">B</mi> <mo stretchy="false">^</mo> </mover> </semantics> </math> </inline-formula>, respectively, without having to invoke a specific gauge. As an example, we quantise the electromagnetic field in the spacetime of an accelerated Minkowski observer, Rindler space, and demonstrate consistency with other field quantisation schemes by reproducing the Unruh effect.
first_indexed 2024-04-11T12:31:22Z
format Article
id doaj.art-8a9dac8f50cd4689bb5022d258651f94
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-11T12:31:22Z
publishDate 2019-08-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-8a9dac8f50cd4689bb5022d258651f942022-12-22T04:23:45ZengMDPI AGEntropy1099-43002019-08-0121984410.3390/e21090844e21090844A Physically-Motivated Quantisation of the Electromagnetic Field on Curved SpacetimesBen Maybee0Daniel Hodgson1Almut Beige2Robert Purdy3Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, UKThe School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UKThe School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UKThe School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UKRecently, Bennett et al. (Eur. J. Phys. <b>37</b>:014001, 2016) presented a physically-motivated and explicitly gauge-independent scheme for the quantisation of the electromagnetic field in flat Minkowski space. In this paper we generalise this field quantisation scheme to curved spacetimes. Working within the standard assumptions of quantum field theory and only postulating the physicality of the photon, we derive the Hamiltonian, <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi>H</mi> <mo stretchy="false">^</mo> </mover> </semantics> </math> </inline-formula>, and the electric and magnetic field observables, <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi mathvariant="bold">E</mi> <mo stretchy="false">^</mo> </mover> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi mathvariant="bold">B</mi> <mo stretchy="false">^</mo> </mover> </semantics> </math> </inline-formula>, respectively, without having to invoke a specific gauge. As an example, we quantise the electromagnetic field in the spacetime of an accelerated Minkowski observer, Rindler space, and demonstrate consistency with other field quantisation schemes by reproducing the Unruh effect.https://www.mdpi.com/1099-4300/21/9/844quantum electrodynamicsrelativistic quantum information
spellingShingle Ben Maybee
Daniel Hodgson
Almut Beige
Robert Purdy
A Physically-Motivated Quantisation of the Electromagnetic Field on Curved Spacetimes
Entropy
quantum electrodynamics
relativistic quantum information
title A Physically-Motivated Quantisation of the Electromagnetic Field on Curved Spacetimes
title_full A Physically-Motivated Quantisation of the Electromagnetic Field on Curved Spacetimes
title_fullStr A Physically-Motivated Quantisation of the Electromagnetic Field on Curved Spacetimes
title_full_unstemmed A Physically-Motivated Quantisation of the Electromagnetic Field on Curved Spacetimes
title_short A Physically-Motivated Quantisation of the Electromagnetic Field on Curved Spacetimes
title_sort physically motivated quantisation of the electromagnetic field on curved spacetimes
topic quantum electrodynamics
relativistic quantum information
url https://www.mdpi.com/1099-4300/21/9/844
work_keys_str_mv AT benmaybee aphysicallymotivatedquantisationoftheelectromagneticfieldoncurvedspacetimes
AT danielhodgson aphysicallymotivatedquantisationoftheelectromagneticfieldoncurvedspacetimes
AT almutbeige aphysicallymotivatedquantisationoftheelectromagneticfieldoncurvedspacetimes
AT robertpurdy aphysicallymotivatedquantisationoftheelectromagneticfieldoncurvedspacetimes
AT benmaybee physicallymotivatedquantisationoftheelectromagneticfieldoncurvedspacetimes
AT danielhodgson physicallymotivatedquantisationoftheelectromagneticfieldoncurvedspacetimes
AT almutbeige physicallymotivatedquantisationoftheelectromagneticfieldoncurvedspacetimes
AT robertpurdy physicallymotivatedquantisationoftheelectromagneticfieldoncurvedspacetimes