Electrospun Biodegradable Poly(L-lactic acid) Nanofiber Membranes as Highly Porous Oil Sorbent Nanomaterials

Crude oil spills seriously harm the ocean environment and endanger the health of various animals and plants. In the present study, a totally biodegradable polymer, poly(L-lactic acid) (PLLA), was employed to fabricate highly porous oil absorbent nanofibrous materials by using a combination of electr...

Full description

Bibliographic Details
Main Authors: Jizhen Yang, Fan Li, Guibin Lu, Yuanbin Lu, Chuanbo Song, Rong Zhou, Shaohua Wu
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/12/15/2670
Description
Summary:Crude oil spills seriously harm the ocean environment and endanger the health of various animals and plants. In the present study, a totally biodegradable polymer, poly(L-lactic acid) (PLLA), was employed to fabricate highly porous oil absorbent nanofibrous materials by using a combination of electrospinning technique and subsequent acetone treatment. We systematically investigated how the electrospinning parameters affected formation of the porous structure of PLLA nanofibers and demonstrated that PLLA nanofibers with decreased and uniform diameter and improved porosity could be rapidly prepared by adjusting solution parameters and spinning parameters. We also demonstrated that the acetone treatment could obviously enhance the pore diameter and specific surface area of as-optimized electrospun PLLA nanofibers. The acetone treatment could also improve the hydrophobic property of as-treated PLLA nanofiber membranes. All these led to a significant increase in oil absorption performance. Through our research, it was found that the oil absorption of PLLA nanofiber membrane increased by more than double after being treated with acetone and the oil retention rate was also improved slightly.
ISSN:2079-4991