Extreme points of ${\mathcal L}_s(^2l_{\infty})$ and ${\mathcal P}(^2l_{\infty})$

For $n\geq 2,$ we show that every extreme point of the unit ball of ${\mathcal L}_s(^2l_{\infty}^n)$ is extreme in ${\mathcal L}_s(^2l_{\infty}^{n+1})$, which answers the question in [Period. Math. Hungar. 2018, 77 (2), 274-290]. As a corollary we show that every extreme point of the unit ball of ${...

Full description

Bibliographic Details
Main Author: Sung Guen Kim
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2021-07-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/4326
_version_ 1827281284973461504
author Sung Guen Kim
author_facet Sung Guen Kim
author_sort Sung Guen Kim
collection DOAJ
description For $n\geq 2,$ we show that every extreme point of the unit ball of ${\mathcal L}_s(^2l_{\infty}^n)$ is extreme in ${\mathcal L}_s(^2l_{\infty}^{n+1})$, which answers the question in [Period. Math. Hungar. 2018, 77 (2), 274-290]. As a corollary we show that every extreme point of the unit ball of ${\mathcal L}_s(^2l_{\infty}^n)$ is extreme in ${\mathcal L}_s(^2l_{\infty})$. We also show that every extreme point of the unit ball of ${\mathcal P}(^2l_{\infty}^2)$ is extreme in ${\mathcal P}(^2l_{\infty}^n).$ As a corollary we show that every extreme point of the unit ball of ${\mathcal P}(^2l_{\infty}^2)$ is extreme in ${\mathcal P}(^2l_{\infty})$.
first_indexed 2024-04-24T08:56:49Z
format Article
id doaj.art-8ab7d97a9b9e4ea48b10669bdbf26019
institution Directory Open Access Journal
issn 2075-9827
2313-0210
language English
last_indexed 2024-04-24T08:56:49Z
publishDate 2021-07-01
publisher Vasyl Stefanyk Precarpathian National University
record_format Article
series Karpatsʹkì Matematičnì Publìkacìï
spelling doaj.art-8ab7d97a9b9e4ea48b10669bdbf260192024-04-16T07:07:42ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102021-07-0113228929710.15330/cmp.13.2.289-2973789Extreme points of ${\mathcal L}_s(^2l_{\infty})$ and ${\mathcal P}(^2l_{\infty})$Sung Guen Kim0Kyungpook National University, 41566, Daegu, South KoreaFor $n\geq 2,$ we show that every extreme point of the unit ball of ${\mathcal L}_s(^2l_{\infty}^n)$ is extreme in ${\mathcal L}_s(^2l_{\infty}^{n+1})$, which answers the question in [Period. Math. Hungar. 2018, 77 (2), 274-290]. As a corollary we show that every extreme point of the unit ball of ${\mathcal L}_s(^2l_{\infty}^n)$ is extreme in ${\mathcal L}_s(^2l_{\infty})$. We also show that every extreme point of the unit ball of ${\mathcal P}(^2l_{\infty}^2)$ is extreme in ${\mathcal P}(^2l_{\infty}^n).$ As a corollary we show that every extreme point of the unit ball of ${\mathcal P}(^2l_{\infty}^2)$ is extreme in ${\mathcal P}(^2l_{\infty})$.https://journals.pnu.edu.ua/index.php/cmp/article/view/4326extreme pointsymmetric bilinear form2-homogeneous polynomials on $l_{\infty}$
spellingShingle Sung Guen Kim
Extreme points of ${\mathcal L}_s(^2l_{\infty})$ and ${\mathcal P}(^2l_{\infty})$
Karpatsʹkì Matematičnì Publìkacìï
extreme point
symmetric bilinear form
2-homogeneous polynomials on $l_{\infty}$
title Extreme points of ${\mathcal L}_s(^2l_{\infty})$ and ${\mathcal P}(^2l_{\infty})$
title_full Extreme points of ${\mathcal L}_s(^2l_{\infty})$ and ${\mathcal P}(^2l_{\infty})$
title_fullStr Extreme points of ${\mathcal L}_s(^2l_{\infty})$ and ${\mathcal P}(^2l_{\infty})$
title_full_unstemmed Extreme points of ${\mathcal L}_s(^2l_{\infty})$ and ${\mathcal P}(^2l_{\infty})$
title_short Extreme points of ${\mathcal L}_s(^2l_{\infty})$ and ${\mathcal P}(^2l_{\infty})$
title_sort extreme points of mathcal l s 2l infty and mathcal p 2l infty
topic extreme point
symmetric bilinear form
2-homogeneous polynomials on $l_{\infty}$
url https://journals.pnu.edu.ua/index.php/cmp/article/view/4326
work_keys_str_mv AT sungguenkim extremepointsofmathcalls2linftyandmathcalp2linfty