Summary: | The combined effects of geometrical structure and chemical composition on the diamond surface electronic structures have been investigated in the present study by using high-level theoretical calculations. The effects of diamond surface planes [(111) vs. (100)], surface terminations (H, F, OH, O<sub>ontop</sub>, O<sub>bridge</sub>, vs. NH<sub>2</sub>), and substitutional doping (B, N vs. P), were of the largest interest to study. As a measure of different electronic structures, the bandgaps, work functions, and electron affinities have been used. In addition to the effects by the doping elements, the different diamond surface planes [(111) vs. (100)] were also observed to cause large differences in the electronic structures. With few exceptions, this was also the case for the surface termination species. For example, O<sub>ontop</sub>-termination was found to induce surface electron conductivities for all systems in the present study (except for a non-doped (100) surface). The other types of surface terminating species induced a reduction in bandgap values. The calculated bandgap ranges for the (111) surface were 3.4–5.7 (non-doping), and 0.9–5.3 (B-doping). For the (100) surface, the ranges were 0.9–5.3 (undoping) and 3.2–4.3 (B-doping). For almost all systems in the present investigation, it was found that photo-induced electron emission cannot take place. The only exception is the non-doped NH<sub>2</sub>-terminated diamond (111) surface, for which a direct photo-induced electron emission is possible.
|