Ellipsoid clustering machine: a front line to aid in disease diagnosis - DOI: 10.3395/reciis.v1i2.Sup.101en

This study presents a new machine learning strategy to address the disease diagnosis classification problem that comprises an unknown number of disease classes. This is exemplified by a software called Ellipsoid Clustering Machine (ECM) that identifies conserved regions in mass spectrometry proteomi...

Full description

Bibliographic Details
Main Authors: Paulo Costa Carvalho, Juliana de Saldanha da Gama Fischer, Valmir C. Barbosa, Maria da Glória da Costa Carvalho, Wim Degrave, Gilberto Barbosa Domont
Format: Article
Language:English
Published: Instituto de Comunicação e Informação Científica e Tecnológica em Saúde (Icict) da Fundação Oswaldo Cruz (Fiocruz) 2007-12-01
Series:RECIIS
Subjects:
Online Access:http://www.reciis.cict.fiocruz.br/index.php/reciis/article/view/101/114
_version_ 1818416044411191296
author Paulo Costa Carvalho
Juliana de Saldanha da Gama Fischer
Valmir C. Barbosa
Maria da Glória da Costa Carvalho
Wim Degrave
Gilberto Barbosa Domont
author_facet Paulo Costa Carvalho
Juliana de Saldanha da Gama Fischer
Valmir C. Barbosa
Maria da Glória da Costa Carvalho
Wim Degrave
Gilberto Barbosa Domont
author_sort Paulo Costa Carvalho
collection DOAJ
description This study presents a new machine learning strategy to address the disease diagnosis classification problem that comprises an unknown number of disease classes. This is exemplified by a software called Ellipsoid Clustering Machine (ECM) that identifies conserved regions in mass spectrometry proteomic profiles obtained from control subjects and uses these to estimate classification boundaries based on sample variance. The software can also be used for visual inspection of data reproducibility. ECM was evaluated using mass spectrometry protein profiles obtained from serum of Hodgkin’s disease patients (HD) and control subjects. According to the leave-one-out cross validation, ECM completely separated both groups based only on the information derived from four selected mass spectral peaks. Classification details and a 3D graphical model showing the separation between the control subject cluster and HD patients is also presented. The software is available on the project website together with online interactive models of the dataset and an animation demonstrating the method.
first_indexed 2024-12-14T11:44:38Z
format Article
id doaj.art-8af1f7a1146f407b9a74fa81a1edc9b4
institution Directory Open Access Journal
issn 1981-6278
language English
last_indexed 2024-12-14T11:44:38Z
publishDate 2007-12-01
publisher Instituto de Comunicação e Informação Científica e Tecnológica em Saúde (Icict) da Fundação Oswaldo Cruz (Fiocruz)
record_format Article
series RECIIS
spelling doaj.art-8af1f7a1146f407b9a74fa81a1edc9b42022-12-21T23:02:41ZengInstituto de Comunicação e Informação Científica e Tecnológica em Saúde (Icict) da Fundação Oswaldo Cruz (Fiocruz)RECIIS1981-62782007-12-0112Sup308Sup315Ellipsoid clustering machine: a front line to aid in disease diagnosis - DOI: 10.3395/reciis.v1i2.Sup.101enPaulo Costa CarvalhoJuliana de Saldanha da Gama FischerValmir C. BarbosaMaria da Glória da Costa CarvalhoWim DegraveGilberto Barbosa DomontThis study presents a new machine learning strategy to address the disease diagnosis classification problem that comprises an unknown number of disease classes. This is exemplified by a software called Ellipsoid Clustering Machine (ECM) that identifies conserved regions in mass spectrometry proteomic profiles obtained from control subjects and uses these to estimate classification boundaries based on sample variance. The software can also be used for visual inspection of data reproducibility. ECM was evaluated using mass spectrometry protein profiles obtained from serum of Hodgkin’s disease patients (HD) and control subjects. According to the leave-one-out cross validation, ECM completely separated both groups based only on the information derived from four selected mass spectral peaks. Classification details and a 3D graphical model showing the separation between the control subject cluster and HD patients is also presented. The software is available on the project website together with online interactive models of the dataset and an animation demonstrating the method.http://www.reciis.cict.fiocruz.br/index.php/reciis/article/view/101/114Mass spectrometrymachine learningpattern recognitionclusteringHodgkin’s diseaseproteomics
spellingShingle Paulo Costa Carvalho
Juliana de Saldanha da Gama Fischer
Valmir C. Barbosa
Maria da Glória da Costa Carvalho
Wim Degrave
Gilberto Barbosa Domont
Ellipsoid clustering machine: a front line to aid in disease diagnosis - DOI: 10.3395/reciis.v1i2.Sup.101en
RECIIS
Mass spectrometry
machine learning
pattern recognition
clustering
Hodgkin’s disease
proteomics
title Ellipsoid clustering machine: a front line to aid in disease diagnosis - DOI: 10.3395/reciis.v1i2.Sup.101en
title_full Ellipsoid clustering machine: a front line to aid in disease diagnosis - DOI: 10.3395/reciis.v1i2.Sup.101en
title_fullStr Ellipsoid clustering machine: a front line to aid in disease diagnosis - DOI: 10.3395/reciis.v1i2.Sup.101en
title_full_unstemmed Ellipsoid clustering machine: a front line to aid in disease diagnosis - DOI: 10.3395/reciis.v1i2.Sup.101en
title_short Ellipsoid clustering machine: a front line to aid in disease diagnosis - DOI: 10.3395/reciis.v1i2.Sup.101en
title_sort ellipsoid clustering machine a front line to aid in disease diagnosis doi 10 3395 reciis v1i2 sup 101en
topic Mass spectrometry
machine learning
pattern recognition
clustering
Hodgkin’s disease
proteomics
url http://www.reciis.cict.fiocruz.br/index.php/reciis/article/view/101/114
work_keys_str_mv AT paulocostacarvalho ellipsoidclusteringmachineafrontlinetoaidindiseasediagnosisdoi103395reciisv1i2sup101en
AT julianadesaldanhadagamafischer ellipsoidclusteringmachineafrontlinetoaidindiseasediagnosisdoi103395reciisv1i2sup101en
AT valmircbarbosa ellipsoidclusteringmachineafrontlinetoaidindiseasediagnosisdoi103395reciisv1i2sup101en
AT mariadagloriadacostacarvalho ellipsoidclusteringmachineafrontlinetoaidindiseasediagnosisdoi103395reciisv1i2sup101en
AT wimdegrave ellipsoidclusteringmachineafrontlinetoaidindiseasediagnosisdoi103395reciisv1i2sup101en
AT gilbertobarbosadomont ellipsoidclusteringmachineafrontlinetoaidindiseasediagnosisdoi103395reciisv1i2sup101en