Density of Avoided Crossings and Diabatic Representation

Electronic structure theory describes the properties of solids using Bloch states that correspond to highly symmetrical nuclear configurations. However, nuclear thermal motion destroys translation symmetry. Here, we describe two approaches relevant to the time evolution of electronic states in the p...

Full description

Bibliographic Details
Main Authors: Anatoly E. Obzhirov, Eric J. Heller
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/5/751
Description
Summary:Electronic structure theory describes the properties of solids using Bloch states that correspond to highly symmetrical nuclear configurations. However, nuclear thermal motion destroys translation symmetry. Here, we describe two approaches relevant to the time evolution of electronic states in the presence of thermal fluctuations. On the one hand, the direct solution of the time-dependent Schrodinger equation for a tight-binding model reveals the diabatic nature of time evolution. On the other hand, because of random nuclear configurations, the electronic Hamiltonian falls into the class of random matrices, which have universal features in their energy spectra. In the end, we discuss combining two approaches to obtain new insights into the influence of thermal fluctuations on electronic states.
ISSN:1099-4300