Fusion tensor subspace transformation framework.

Tensor subspace transformation, a commonly used subspace transformation technique, has gained more and more popularity over the past few years because many objects in the real world can be naturally represented as multidimensional arrays, i.e. tensors. For example, a RGB facial image can be represen...

Full description

Bibliographic Details
Main Authors: Su-Jing Wang, Chun-Guang Zhou, Xiaolan Fu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3698091?pdf=render
Description
Summary:Tensor subspace transformation, a commonly used subspace transformation technique, has gained more and more popularity over the past few years because many objects in the real world can be naturally represented as multidimensional arrays, i.e. tensors. For example, a RGB facial image can be represented as a three-dimensional array (or 3rd-order tensor). The first two dimensionalities (or modes) represent the facial spatial information and the third dimensionality (or mode) represents the color space information. Each mode of the tensor may express a different semantic meaning. Thus different transformation strategies should be applied to different modes of the tensor according to their semantic meanings to obtain the best performance. To the best of our knowledge, there are no existing tensor subspace transformation algorithm which implements different transformation strategies on different modes of a tensor accordingly. In this paper, we propose a fusion tensor subspace transformation framework, a novel idea where different transformation strategies are implemented on separate modes of a tensor. Under the framework, we propose the Fusion Tensor Color Space (FTCS) model for face recognition.
ISSN:1932-6203