Doxorubicin–Gelatin/Fe<sub>3</sub>O<sub>4</sub>–Alginate Dual-Layer Magnetic Nanoparticles as Targeted Anticancer Drug Delivery Vehicles
In this study, magnetic nanoparticles composed of a core (doxorubicin–gelatin) and a shell layer (Fe<sub>3</sub>O<sub>4</sub>–alginate) were developed to function as targeted anticancer drug delivery vehicles. The anticancer drug doxorubicin (DOX) was selected as a model drug...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-08-01
|
Series: | Polymers |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4360/12/8/1747 |
_version_ | 1797560270171668480 |
---|---|
author | Chiung-Hua Huang Ting-Ju Chuang Cherng-Jyh Ke Chun-Hsu Yao |
author_facet | Chiung-Hua Huang Ting-Ju Chuang Cherng-Jyh Ke Chun-Hsu Yao |
author_sort | Chiung-Hua Huang |
collection | DOAJ |
description | In this study, magnetic nanoparticles composed of a core (doxorubicin–gelatin) and a shell layer (Fe<sub>3</sub>O<sub>4</sub>–alginate) were developed to function as targeted anticancer drug delivery vehicles. The anticancer drug doxorubicin (DOX) was selected as a model drug and embedded in the inner gelatin core to obtain high encapsulation efficiency. The advantage of the outer magnetic layer is that it targets the drug to the tumor tissue and provides controlled drug release. The physicochemical properties of doxorubicin–gelatin/Fe<sub>3</sub>O<sub>4</sub>–alginate nanoparticles (DG/FA NPs) were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction. The mean diameter of DG/FA NPs, which was determined using a zeta potential analyzer, was 401.8 ± 3.6 nm. The encapsulation rate was 64.6 ± 11.8%. In vitro drug release and accumulation were also studied. It was found that the release of DOX accelerated in an acidic condition. With the manipulation of an external magnetic field, DG/FA NPs efficiently targeted Michigan Cancer Foundation-7 (MCF-7) breast cancer cells and showed in the nucleus after 6 h of incubation. After 12 h of incubation, the relative fluorescence intensity reached 98.4%, and the cell viability of MCF-7 cells decreased to 52.3 ± 4.64%. Dual-layer DG/FA NPs could efficiently encapsulate and deliver DOX into MCF-7 cells to cause the death of cancer cells. The results show that DG/FA NPs have the potential for use in targeted drug delivery and cancer therapy. |
first_indexed | 2024-03-10T17:57:07Z |
format | Article |
id | doaj.art-8afc59871ea945ac8677e20edbb53054 |
institution | Directory Open Access Journal |
issn | 2073-4360 |
language | English |
last_indexed | 2024-03-10T17:57:07Z |
publishDate | 2020-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Polymers |
spelling | doaj.art-8afc59871ea945ac8677e20edbb530542023-11-20T09:09:02ZengMDPI AGPolymers2073-43602020-08-01128174710.3390/polym12081747Doxorubicin–Gelatin/Fe<sub>3</sub>O<sub>4</sub>–Alginate Dual-Layer Magnetic Nanoparticles as Targeted Anticancer Drug Delivery VehiclesChiung-Hua Huang0Ting-Ju Chuang1Cherng-Jyh Ke2Chun-Hsu Yao3Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, TaiwanDepartment of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40202, TaiwanBiomaterials Translational Research Center, China Medical University Hospital, Taichung 40202, TaiwanDepartment of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40202, TaiwanIn this study, magnetic nanoparticles composed of a core (doxorubicin–gelatin) and a shell layer (Fe<sub>3</sub>O<sub>4</sub>–alginate) were developed to function as targeted anticancer drug delivery vehicles. The anticancer drug doxorubicin (DOX) was selected as a model drug and embedded in the inner gelatin core to obtain high encapsulation efficiency. The advantage of the outer magnetic layer is that it targets the drug to the tumor tissue and provides controlled drug release. The physicochemical properties of doxorubicin–gelatin/Fe<sub>3</sub>O<sub>4</sub>–alginate nanoparticles (DG/FA NPs) were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction. The mean diameter of DG/FA NPs, which was determined using a zeta potential analyzer, was 401.8 ± 3.6 nm. The encapsulation rate was 64.6 ± 11.8%. In vitro drug release and accumulation were also studied. It was found that the release of DOX accelerated in an acidic condition. With the manipulation of an external magnetic field, DG/FA NPs efficiently targeted Michigan Cancer Foundation-7 (MCF-7) breast cancer cells and showed in the nucleus after 6 h of incubation. After 12 h of incubation, the relative fluorescence intensity reached 98.4%, and the cell viability of MCF-7 cells decreased to 52.3 ± 4.64%. Dual-layer DG/FA NPs could efficiently encapsulate and deliver DOX into MCF-7 cells to cause the death of cancer cells. The results show that DG/FA NPs have the potential for use in targeted drug delivery and cancer therapy.https://www.mdpi.com/2073-4360/12/8/1747magnetic nanoparticlestargeted drug deliverydoxorubicingelatinalginate |
spellingShingle | Chiung-Hua Huang Ting-Ju Chuang Cherng-Jyh Ke Chun-Hsu Yao Doxorubicin–Gelatin/Fe<sub>3</sub>O<sub>4</sub>–Alginate Dual-Layer Magnetic Nanoparticles as Targeted Anticancer Drug Delivery Vehicles Polymers magnetic nanoparticles targeted drug delivery doxorubicin gelatin alginate |
title | Doxorubicin–Gelatin/Fe<sub>3</sub>O<sub>4</sub>–Alginate Dual-Layer Magnetic Nanoparticles as Targeted Anticancer Drug Delivery Vehicles |
title_full | Doxorubicin–Gelatin/Fe<sub>3</sub>O<sub>4</sub>–Alginate Dual-Layer Magnetic Nanoparticles as Targeted Anticancer Drug Delivery Vehicles |
title_fullStr | Doxorubicin–Gelatin/Fe<sub>3</sub>O<sub>4</sub>–Alginate Dual-Layer Magnetic Nanoparticles as Targeted Anticancer Drug Delivery Vehicles |
title_full_unstemmed | Doxorubicin–Gelatin/Fe<sub>3</sub>O<sub>4</sub>–Alginate Dual-Layer Magnetic Nanoparticles as Targeted Anticancer Drug Delivery Vehicles |
title_short | Doxorubicin–Gelatin/Fe<sub>3</sub>O<sub>4</sub>–Alginate Dual-Layer Magnetic Nanoparticles as Targeted Anticancer Drug Delivery Vehicles |
title_sort | doxorubicin gelatin fe sub 3 sub o sub 4 sub alginate dual layer magnetic nanoparticles as targeted anticancer drug delivery vehicles |
topic | magnetic nanoparticles targeted drug delivery doxorubicin gelatin alginate |
url | https://www.mdpi.com/2073-4360/12/8/1747 |
work_keys_str_mv | AT chiunghuahuang doxorubicingelatinfesub3subosub4subalginateduallayermagneticnanoparticlesastargetedanticancerdrugdeliveryvehicles AT tingjuchuang doxorubicingelatinfesub3subosub4subalginateduallayermagneticnanoparticlesastargetedanticancerdrugdeliveryvehicles AT cherngjyhke doxorubicingelatinfesub3subosub4subalginateduallayermagneticnanoparticlesastargetedanticancerdrugdeliveryvehicles AT chunhsuyao doxorubicingelatinfesub3subosub4subalginateduallayermagneticnanoparticlesastargetedanticancerdrugdeliveryvehicles |