High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis
Suppression of gene expression due to aberrant promoter methylation contributes to organ fibrosis. Here, the authors couple a deactivated Cas9 to the TET3 catalytic domain to induce expression of four antifibrotic genes, and show that lentiviral-mediated delivery is effective in reducing kidney fibr...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2018-08-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-018-05766-5 |
_version_ | 1818835027917537280 |
---|---|
author | Xingbo Xu Xiaoying Tan Björn Tampe Tim Wilhelmi Melanie S. Hulshoff Shoji Saito Tobias Moser Raghu Kalluri Gerd Hasenfuss Elisabeth M. Zeisberg Michael Zeisberg |
author_facet | Xingbo Xu Xiaoying Tan Björn Tampe Tim Wilhelmi Melanie S. Hulshoff Shoji Saito Tobias Moser Raghu Kalluri Gerd Hasenfuss Elisabeth M. Zeisberg Michael Zeisberg |
author_sort | Xingbo Xu |
collection | DOAJ |
description | Suppression of gene expression due to aberrant promoter methylation contributes to organ fibrosis. Here, the authors couple a deactivated Cas9 to the TET3 catalytic domain to induce expression of four antifibrotic genes, and show that lentiviral-mediated delivery is effective in reducing kidney fibrosis in mouse models. |
first_indexed | 2024-12-19T02:44:11Z |
format | Article |
id | doaj.art-8afce270d13543dc99f4fba3b97f9f22 |
institution | Directory Open Access Journal |
issn | 2041-1723 |
language | English |
last_indexed | 2024-12-19T02:44:11Z |
publishDate | 2018-08-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Nature Communications |
spelling | doaj.art-8afce270d13543dc99f4fba3b97f9f222022-12-21T20:39:00ZengNature PortfolioNature Communications2041-17232018-08-019111510.1038/s41467-018-05766-5High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosisXingbo Xu0Xiaoying Tan1Björn Tampe2Tim Wilhelmi3Melanie S. Hulshoff4Shoji Saito5Tobias Moser6Raghu Kalluri7Gerd Hasenfuss8Elisabeth M. Zeisberg9Michael Zeisberg10Department of Cardiology and Pneumology, University Medical Center GöttingenGerman Center for Cardiovascular Research (DZHK) Partner SiteDepartment of Nephrology and Rheumatology, University Medical Center GöttingenDepartment of Cardiology and Pneumology, University Medical Center GöttingenDepartment of Cardiology and Pneumology, University Medical Center GöttingenDepartment of Nephrology and Rheumatology, University Medical Center GöttingenInstitute for Auditory Neuroscience & Inner Ear Lab, University Medical Center GöttingenDepartment of Cancer Biology, Metastasis Research Center, University of Texas, MD Anderson Cancer CenterDepartment of Cardiology and Pneumology, University Medical Center GöttingenDepartment of Cardiology and Pneumology, University Medical Center GöttingenGerman Center for Cardiovascular Research (DZHK) Partner SiteSuppression of gene expression due to aberrant promoter methylation contributes to organ fibrosis. Here, the authors couple a deactivated Cas9 to the TET3 catalytic domain to induce expression of four antifibrotic genes, and show that lentiviral-mediated delivery is effective in reducing kidney fibrosis in mouse models.https://doi.org/10.1038/s41467-018-05766-5 |
spellingShingle | Xingbo Xu Xiaoying Tan Björn Tampe Tim Wilhelmi Melanie S. Hulshoff Shoji Saito Tobias Moser Raghu Kalluri Gerd Hasenfuss Elisabeth M. Zeisberg Michael Zeisberg High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis Nature Communications |
title | High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis |
title_full | High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis |
title_fullStr | High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis |
title_full_unstemmed | High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis |
title_short | High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis |
title_sort | high fidelity crispr cas9 based gene specific hydroxymethylation rescues gene expression and attenuates renal fibrosis |
url | https://doi.org/10.1038/s41467-018-05766-5 |
work_keys_str_mv | AT xingboxu highfidelitycrisprcas9basedgenespecifichydroxymethylationrescuesgeneexpressionandattenuatesrenalfibrosis AT xiaoyingtan highfidelitycrisprcas9basedgenespecifichydroxymethylationrescuesgeneexpressionandattenuatesrenalfibrosis AT bjorntampe highfidelitycrisprcas9basedgenespecifichydroxymethylationrescuesgeneexpressionandattenuatesrenalfibrosis AT timwilhelmi highfidelitycrisprcas9basedgenespecifichydroxymethylationrescuesgeneexpressionandattenuatesrenalfibrosis AT melanieshulshoff highfidelitycrisprcas9basedgenespecifichydroxymethylationrescuesgeneexpressionandattenuatesrenalfibrosis AT shojisaito highfidelitycrisprcas9basedgenespecifichydroxymethylationrescuesgeneexpressionandattenuatesrenalfibrosis AT tobiasmoser highfidelitycrisprcas9basedgenespecifichydroxymethylationrescuesgeneexpressionandattenuatesrenalfibrosis AT raghukalluri highfidelitycrisprcas9basedgenespecifichydroxymethylationrescuesgeneexpressionandattenuatesrenalfibrosis AT gerdhasenfuss highfidelitycrisprcas9basedgenespecifichydroxymethylationrescuesgeneexpressionandattenuatesrenalfibrosis AT elisabethmzeisberg highfidelitycrisprcas9basedgenespecifichydroxymethylationrescuesgeneexpressionandattenuatesrenalfibrosis AT michaelzeisberg highfidelitycrisprcas9basedgenespecifichydroxymethylationrescuesgeneexpressionandattenuatesrenalfibrosis |