TROPOMI tropospheric ozone column data: geophysical assessment and comparison to ozonesondes, GOME-2B and OMI

<p><span id="page7406"/>Ozone in the troposphere affects humans and ecosystems as a pollutant and as a greenhouse gas. Observing, understanding and modelling this dual role, as well as monitoring effects of international regulations on air quality and climate change, however,...

Full description

Bibliographic Details
Main Authors: D. Hubert, K.-P. Heue, J.-C. Lambert, T. Verhoelst, M. Allaart, S. Compernolle, P. D. Cullis, A. Dehn, C. Félix, B. J. Johnson, A. Keppens, D. E. Kollonige, C. Lerot, D. Loyola, M. Maata, S. Mitro, M. Mohamad, A. Piters, F. Romahn, H. B. Selkirk, F. R. da Silva, R. M. Stauffer, A. M. Thompson, J. P. Veefkind, H. Vömel, J. C. Witte, C. Zehner
Format: Article
Language:English
Published: Copernicus Publications 2021-11-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/14/7405/2021/amt-14-7405-2021.pdf
_version_ 1818899998764433408
author D. Hubert
K.-P. Heue
K.-P. Heue
J.-C. Lambert
T. Verhoelst
M. Allaart
S. Compernolle
P. D. Cullis
A. Dehn
C. Félix
B. J. Johnson
A. Keppens
D. E. Kollonige
D. E. Kollonige
C. Lerot
D. Loyola
M. Maata
S. Mitro
M. Mohamad
A. Piters
F. Romahn
H. B. Selkirk
H. B. Selkirk
F. R. da Silva
R. M. Stauffer
R. M. Stauffer
A. M. Thompson
J. P. Veefkind
H. Vömel
J. C. Witte
C. Zehner
author_facet D. Hubert
K.-P. Heue
K.-P. Heue
J.-C. Lambert
T. Verhoelst
M. Allaart
S. Compernolle
P. D. Cullis
A. Dehn
C. Félix
B. J. Johnson
A. Keppens
D. E. Kollonige
D. E. Kollonige
C. Lerot
D. Loyola
M. Maata
S. Mitro
M. Mohamad
A. Piters
F. Romahn
H. B. Selkirk
H. B. Selkirk
F. R. da Silva
R. M. Stauffer
R. M. Stauffer
A. M. Thompson
J. P. Veefkind
H. Vömel
J. C. Witte
C. Zehner
author_sort D. Hubert
collection DOAJ
description <p><span id="page7406"/>Ozone in the troposphere affects humans and ecosystems as a pollutant and as a greenhouse gas. Observing, understanding and modelling this dual role, as well as monitoring effects of international regulations on air quality and climate change, however, challenge measurement systems to operate at opposite ends of the spatio-temporal scale ladder. Aboard the ESA/EU Copernicus Sentinel-5 Precursor (S5P) satellite launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aspires to take the next leap forward by measuring ozone and its precursors at unprecedented horizontal resolution until at least the mid-2020s. In this work, we assess the quality of TROPOMI's first release (V01.01.05–08) of tropical tropospheric ozone column (TrOC) data. Derived with the convective cloud differential (CCD) method, TROPOMI daily TrOC data represent the 3 d moving mean ozone column between the surface and 270 <span class="inline-formula">hPa</span> under clear-sky conditions gridded at 0.5<span class="inline-formula"><sup>∘</sup></span> latitude by 1<span class="inline-formula"><sup>∘</sup></span> longitude resolution. Comparisons to almost 2 years of co-located SHADOZ ozonesonde and satellite data (Aura OMI and MetOp-B GOME-2) conclude to TROPOMI biases between <span class="inline-formula">−</span>0.1 and <span class="inline-formula">+</span>2.3 <span class="inline-formula">DU</span> (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>&lt;</mo><mo>+</mo><mn mathvariant="normal">13</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="2e43f0d3e714896b2ec25616412a0c6c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-7405-2021-ie00001.svg" width="32pt" height="10pt" src="amt-14-7405-2021-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">%</span>) when averaged over the tropical belt. The field of the bias is essentially uniform in space (deviations <span class="inline-formula">&lt;1</span> <span class="inline-formula">DU</span>) and stable in time at the 1.5–2.5 <span class="inline-formula">DU</span> level. However, the record is still fairly short, and continued monitoring will be key to clarify whether observed patterns and stability persist, alter behaviour or disappear. Biases are partially due to TROPOMI and the reference data records themselves, but they can also be linked to systematic effects of the non-perfect co-locations. Random uncertainty due to co-location mismatch contributes considerably to the 2.6–4.6 <span class="inline-formula">DU</span> (<span class="inline-formula">∼14</span> <span class="inline-formula">%</span>–23 <span class="inline-formula">%</span>) statistical dispersion observed in the difference time series. We circumvent part of this problem by employing the triple co-location analysis technique and infer that TROPOMI single-measurement precision is better than 1.5–2.5 <span class="inline-formula">DU</span> (<span class="inline-formula">∼8</span> <span class="inline-formula">%</span>–13 <span class="inline-formula">%</span>), in line with uncertainty estimates reported in the data files. Hence, the TROPOMI precision is judged to be 20 <span class="inline-formula">%</span>–25 <span class="inline-formula">%</span> better than for its predecessors OMI and GOME-2B, while sampling at 4 times better spatial resolution and almost 2 times better temporal resolution. Using TROPOMI tropospheric ozone columns at maximal resolution nevertheless requires consideration of correlated errors at small scales of up to 5 <span class="inline-formula">DU</span> due to the inevitable interplay of satellite orbit and cloud coverage. Two particular types of sampling error are investigated, and we suggest how these can be identified or remedied. Our study confirms that major known geophysical patterns and signals of the tropical tropospheric ozone field are imprinted in TROPOMI's 2-year data record. These include the permanent zonal wave-one pattern, the pervasive annual and semiannual cycles, the high levels of ozone due to biomass burning around the Atlantic basin, and enhanced convective activity cycles associated with the Madden–Julian Oscillation over the Indo-Pacific warm pool. TROPOMI's combination of higher precision and higher resolution reveals details of these patterns and the processes involved, at considerably smaller spatial and temporal scales and with more complete coverage than contemporary satellite sounders. If the accuracy of future TROPOMI data proves to remain stable with time, these hold great potential to be included in Climate Data Records, as well as serve as a travelling standard to interconnect the upcoming constellation of air quality satellites in geostationary and low Earth orbits.</p>
first_indexed 2024-12-19T19:56:52Z
format Article
id doaj.art-8b36420f14684dbbb7cb4fe2cac50185
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-12-19T19:56:52Z
publishDate 2021-11-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-8b36420f14684dbbb7cb4fe2cac501852022-12-21T20:07:47ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-11-01147405743310.5194/amt-14-7405-2021TROPOMI tropospheric ozone column data: geophysical assessment and comparison to ozonesondes, GOME-2B and OMID. Hubert0K.-P. Heue1K.-P. Heue2J.-C. Lambert3T. Verhoelst4M. Allaart5S. Compernolle6P. D. Cullis7A. Dehn8C. Félix9B. J. Johnson10A. Keppens11D. E. Kollonige12D. E. Kollonige13C. Lerot14D. Loyola15M. Maata16S. Mitro17M. Mohamad18A. Piters19F. Romahn20H. B. Selkirk21H. B. Selkirk22F. R. da Silva23R. M. Stauffer24R. M. Stauffer25A. M. Thompson26J. P. Veefkind27H. Vömel28J. C. Witte29C. Zehner30Atmospheric Data Synergies, Atmospheric Reactive Gases, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Uccle (Brussels), BelgiumGerman Aerospace Centre (DLR), Münchener Straße 20, 82234 Weßling, GermanyTechnische Universität München, Arcisstrasse 21, 80333 Munich, GermanyAtmospheric Data Synergies, Atmospheric Reactive Gases, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Uccle (Brussels), BelgiumAtmospheric Data Synergies, Atmospheric Reactive Gases, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Uccle (Brussels), BelgiumRoyal Netherlands Meteorological Institute (KNMI), Utrechtseweg 297, 3730 AE De Bilt, the NetherlandsAtmospheric Data Synergies, Atmospheric Reactive Gases, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Uccle (Brussels), BelgiumNOAA Global Monitoring Laboratory (NOAA/ESRL/GML), 1325 Broadway, Boulder, CO 80305-3337, USAEuropean Space Agency/Centre for Earth Observation (ESA/ESRIN), Largo Galileo Galilei 1, 00044 Frascati, Rome, ItalyFederal Office of Meteorology and Climatology, MeteoSwiss, Payerne, SwitzerlandNOAA Global Monitoring Laboratory (NOAA/ESRL/GML), 1325 Broadway, Boulder, CO 80305-3337, USAAtmospheric Data Synergies, Atmospheric Reactive Gases, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Uccle (Brussels), BelgiumScience Systems and Applications, Inc., Lanham, MD, USAAtmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USAAtmospheric Data Synergies, Atmospheric Reactive Gases, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Uccle (Brussels), BelgiumGerman Aerospace Centre (DLR), Münchener Straße 20, 82234 Weßling, GermanySchool of Biological and Chemical Sciences, University of the South Pacific, Suva, FijiMeteorological Service of Suriname, Paramaribo, SurinameAtmospheric Science and Cloud Seeding Division, Malaysian Meteorological Department, Petaling Jaya, Selangor, MalaysiaRoyal Netherlands Meteorological Institute (KNMI), Utrechtseweg 297, 3730 AE De Bilt, the NetherlandsGerman Aerospace Centre (DLR), Münchener Straße 20, 82234 Weßling, GermanyAtmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USAUniversities Space Research Association, Columbia, MD, USALaboratory of Environmental and Tropical Variables, Brazilian Institute of Space Research, Natal, BrazilAtmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USAEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USAAtmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USARoyal Netherlands Meteorological Institute (KNMI), Utrechtseweg 297, 3730 AE De Bilt, the NetherlandsNational Center for Atmospheric Research, Boulder, CO, USANational Center for Atmospheric Research, Boulder, CO, USAEuropean Space Agency/Centre for Earth Observation (ESA/ESRIN), Largo Galileo Galilei 1, 00044 Frascati, Rome, Italy<p><span id="page7406"/>Ozone in the troposphere affects humans and ecosystems as a pollutant and as a greenhouse gas. Observing, understanding and modelling this dual role, as well as monitoring effects of international regulations on air quality and climate change, however, challenge measurement systems to operate at opposite ends of the spatio-temporal scale ladder. Aboard the ESA/EU Copernicus Sentinel-5 Precursor (S5P) satellite launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aspires to take the next leap forward by measuring ozone and its precursors at unprecedented horizontal resolution until at least the mid-2020s. In this work, we assess the quality of TROPOMI's first release (V01.01.05–08) of tropical tropospheric ozone column (TrOC) data. Derived with the convective cloud differential (CCD) method, TROPOMI daily TrOC data represent the 3 d moving mean ozone column between the surface and 270 <span class="inline-formula">hPa</span> under clear-sky conditions gridded at 0.5<span class="inline-formula"><sup>∘</sup></span> latitude by 1<span class="inline-formula"><sup>∘</sup></span> longitude resolution. Comparisons to almost 2 years of co-located SHADOZ ozonesonde and satellite data (Aura OMI and MetOp-B GOME-2) conclude to TROPOMI biases between <span class="inline-formula">−</span>0.1 and <span class="inline-formula">+</span>2.3 <span class="inline-formula">DU</span> (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>&lt;</mo><mo>+</mo><mn mathvariant="normal">13</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="2e43f0d3e714896b2ec25616412a0c6c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-7405-2021-ie00001.svg" width="32pt" height="10pt" src="amt-14-7405-2021-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">%</span>) when averaged over the tropical belt. The field of the bias is essentially uniform in space (deviations <span class="inline-formula">&lt;1</span> <span class="inline-formula">DU</span>) and stable in time at the 1.5–2.5 <span class="inline-formula">DU</span> level. However, the record is still fairly short, and continued monitoring will be key to clarify whether observed patterns and stability persist, alter behaviour or disappear. Biases are partially due to TROPOMI and the reference data records themselves, but they can also be linked to systematic effects of the non-perfect co-locations. Random uncertainty due to co-location mismatch contributes considerably to the 2.6–4.6 <span class="inline-formula">DU</span> (<span class="inline-formula">∼14</span> <span class="inline-formula">%</span>–23 <span class="inline-formula">%</span>) statistical dispersion observed in the difference time series. We circumvent part of this problem by employing the triple co-location analysis technique and infer that TROPOMI single-measurement precision is better than 1.5–2.5 <span class="inline-formula">DU</span> (<span class="inline-formula">∼8</span> <span class="inline-formula">%</span>–13 <span class="inline-formula">%</span>), in line with uncertainty estimates reported in the data files. Hence, the TROPOMI precision is judged to be 20 <span class="inline-formula">%</span>–25 <span class="inline-formula">%</span> better than for its predecessors OMI and GOME-2B, while sampling at 4 times better spatial resolution and almost 2 times better temporal resolution. Using TROPOMI tropospheric ozone columns at maximal resolution nevertheless requires consideration of correlated errors at small scales of up to 5 <span class="inline-formula">DU</span> due to the inevitable interplay of satellite orbit and cloud coverage. Two particular types of sampling error are investigated, and we suggest how these can be identified or remedied. Our study confirms that major known geophysical patterns and signals of the tropical tropospheric ozone field are imprinted in TROPOMI's 2-year data record. These include the permanent zonal wave-one pattern, the pervasive annual and semiannual cycles, the high levels of ozone due to biomass burning around the Atlantic basin, and enhanced convective activity cycles associated with the Madden–Julian Oscillation over the Indo-Pacific warm pool. TROPOMI's combination of higher precision and higher resolution reveals details of these patterns and the processes involved, at considerably smaller spatial and temporal scales and with more complete coverage than contemporary satellite sounders. If the accuracy of future TROPOMI data proves to remain stable with time, these hold great potential to be included in Climate Data Records, as well as serve as a travelling standard to interconnect the upcoming constellation of air quality satellites in geostationary and low Earth orbits.</p>https://amt.copernicus.org/articles/14/7405/2021/amt-14-7405-2021.pdf
spellingShingle D. Hubert
K.-P. Heue
K.-P. Heue
J.-C. Lambert
T. Verhoelst
M. Allaart
S. Compernolle
P. D. Cullis
A. Dehn
C. Félix
B. J. Johnson
A. Keppens
D. E. Kollonige
D. E. Kollonige
C. Lerot
D. Loyola
M. Maata
S. Mitro
M. Mohamad
A. Piters
F. Romahn
H. B. Selkirk
H. B. Selkirk
F. R. da Silva
R. M. Stauffer
R. M. Stauffer
A. M. Thompson
J. P. Veefkind
H. Vömel
J. C. Witte
C. Zehner
TROPOMI tropospheric ozone column data: geophysical assessment and comparison to ozonesondes, GOME-2B and OMI
Atmospheric Measurement Techniques
title TROPOMI tropospheric ozone column data: geophysical assessment and comparison to ozonesondes, GOME-2B and OMI
title_full TROPOMI tropospheric ozone column data: geophysical assessment and comparison to ozonesondes, GOME-2B and OMI
title_fullStr TROPOMI tropospheric ozone column data: geophysical assessment and comparison to ozonesondes, GOME-2B and OMI
title_full_unstemmed TROPOMI tropospheric ozone column data: geophysical assessment and comparison to ozonesondes, GOME-2B and OMI
title_short TROPOMI tropospheric ozone column data: geophysical assessment and comparison to ozonesondes, GOME-2B and OMI
title_sort tropomi tropospheric ozone column data geophysical assessment and comparison to ozonesondes gome 2b and omi
url https://amt.copernicus.org/articles/14/7405/2021/amt-14-7405-2021.pdf
work_keys_str_mv AT dhubert tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT kpheue tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT kpheue tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT jclambert tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT tverhoelst tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT mallaart tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT scompernolle tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT pdcullis tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT adehn tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT cfelix tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT bjjohnson tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT akeppens tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT dekollonige tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT dekollonige tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT clerot tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT dloyola tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT mmaata tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT smitro tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT mmohamad tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT apiters tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT fromahn tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT hbselkirk tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT hbselkirk tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT frdasilva tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT rmstauffer tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT rmstauffer tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT amthompson tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT jpveefkind tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT hvomel tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT jcwitte tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi
AT czehner tropomitroposphericozonecolumndatageophysicalassessmentandcomparisontoozonesondesgome2bandomi