Atom-only theories for U(1) symmetric cavity-QED models

We consider a generalized Dicke model with U(1) symmetry, which can undergo a transition to a superradiant state that spontaneously breaks this symmetry. By exploiting the difference in timescale between atomic and cavity dynamics, one may eliminate the cavity dynamics, providing an atom-only theory...

Full description

Bibliographic Details
Main Authors: Roberta Palacino, Jonathan Keeling
Format: Article
Language:English
Published: American Physical Society 2021-07-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.3.L032016
Description
Summary:We consider a generalized Dicke model with U(1) symmetry, which can undergo a transition to a superradiant state that spontaneously breaks this symmetry. By exploiting the difference in timescale between atomic and cavity dynamics, one may eliminate the cavity dynamics, providing an atom-only theory. We show that the standard Redfield theory cannot describe the transition to the superradiant state, but including higher-order corrections does recover the transition. Our work reveals how the forms of effective theories must vary for models with continuous symmetry, and provides a template to develop effective theories of more complex models.
ISSN:2643-1564