NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield Microscope
Near-infrared (NIR) marker-based imaging is of growing importance for deep tissue imaging and is based on a considerable reduction of optical losses at large wavelengths. We aim to extend the range of NIR excitation wavelengths particularly to values beyond 1.6 <inline-formula><math xmlns=&...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-11-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/11/12/3193 |
_version_ | 1827670749486252032 |
---|---|
author | Laura Vittadello Jan Klenen Karsten Koempe Laura Kocsor Zsuzsanna Szaller Mirco Imlau |
author_facet | Laura Vittadello Jan Klenen Karsten Koempe Laura Kocsor Zsuzsanna Szaller Mirco Imlau |
author_sort | Laura Vittadello |
collection | DOAJ |
description | Near-infrared (NIR) marker-based imaging is of growing importance for deep tissue imaging and is based on a considerable reduction of optical losses at large wavelengths. We aim to extend the range of NIR excitation wavelengths particularly to values beyond 1.6 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m in order to profit from the low loss biological windows NIR-III and NIR-IV. We address this task by studying NIR-excitation to NIR-emission conversion and imaging in the range of 1200 up to 2400 nm at the example of harmonic Mg-doped lithium niobate nanoparticles (i) using a nonlinear diffuse femtosecond-pulse reflectometer and (ii) a Tunable hIGh EneRgy (TIGER) widefield microscope. We successfully demonstrate the existence of appropriate excitation/emission configurations in this spectral region taking harmonic generation into account. Moreover, NIR-imaging using the most striking configurations NIR-III to NIR-I, based on second harmonic generation (SHG), and NIR-IV to NIR-I, based on third harmonic generation (THG), is demonstrated with excitation wavelengths from 1.6–1.8 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m and from 2.1–2.2 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m, respectively. The advantages of the approach and the potential to additionally extend the emission range up to 2400 nm, making use of sum frequency generation (SFG) and difference frequency generation (DFG), are discussed. |
first_indexed | 2024-03-10T03:27:26Z |
format | Article |
id | doaj.art-8b3b479d15594d44ae1f4d8fbb29e855 |
institution | Directory Open Access Journal |
issn | 2079-4991 |
language | English |
last_indexed | 2024-03-10T03:27:26Z |
publishDate | 2021-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Nanomaterials |
spelling | doaj.art-8b3b479d15594d44ae1f4d8fbb29e8552023-11-23T09:49:10ZengMDPI AGNanomaterials2079-49912021-11-011112319310.3390/nano11123193NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield MicroscopeLaura Vittadello0Jan Klenen1Karsten Koempe2Laura Kocsor3Zsuzsanna Szaller4Mirco Imlau5Department of Physics, Osnabrueck University, 49076 Osnabrueck, GermanyDepartment of Physics, Osnabrueck University, 49076 Osnabrueck, GermanyResearch Center for Cellular Nanoanalytics, Osnabrueck (CellNanOs), Osnabrueck University, 49076 Osnabrueck, GermanyWigner Research Centre for Physics, Institute for Solid State Physics and Optics, Konkoly-Thege M. út 29-33, H-1121 Budapest, HungaryWigner Research Centre for Physics, Institute for Solid State Physics and Optics, Konkoly-Thege M. út 29-33, H-1121 Budapest, HungaryDepartment of Physics, Osnabrueck University, 49076 Osnabrueck, GermanyNear-infrared (NIR) marker-based imaging is of growing importance for deep tissue imaging and is based on a considerable reduction of optical losses at large wavelengths. We aim to extend the range of NIR excitation wavelengths particularly to values beyond 1.6 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m in order to profit from the low loss biological windows NIR-III and NIR-IV. We address this task by studying NIR-excitation to NIR-emission conversion and imaging in the range of 1200 up to 2400 nm at the example of harmonic Mg-doped lithium niobate nanoparticles (i) using a nonlinear diffuse femtosecond-pulse reflectometer and (ii) a Tunable hIGh EneRgy (TIGER) widefield microscope. We successfully demonstrate the existence of appropriate excitation/emission configurations in this spectral region taking harmonic generation into account. Moreover, NIR-imaging using the most striking configurations NIR-III to NIR-I, based on second harmonic generation (SHG), and NIR-IV to NIR-I, based on third harmonic generation (THG), is demonstrated with excitation wavelengths from 1.6–1.8 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m and from 2.1–2.2 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m, respectively. The advantages of the approach and the potential to additionally extend the emission range up to 2400 nm, making use of sum frequency generation (SFG) and difference frequency generation (DFG), are discussed.https://www.mdpi.com/2079-4991/11/12/3193biological windowsNIR-IIINIR-IVNIR imagingnonlinear microscopynonlinear photonics |
spellingShingle | Laura Vittadello Jan Klenen Karsten Koempe Laura Kocsor Zsuzsanna Szaller Mirco Imlau NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield Microscope Nanomaterials biological windows NIR-III NIR-IV NIR imaging nonlinear microscopy nonlinear photonics |
title | NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield Microscope |
title_full | NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield Microscope |
title_fullStr | NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield Microscope |
title_full_unstemmed | NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield Microscope |
title_short | NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield Microscope |
title_sort | nir to nir imaging extended excitation up to 2 2 μm using harmonic nanoparticles with a tunable high energy tiger widefield microscope |
topic | biological windows NIR-III NIR-IV NIR imaging nonlinear microscopy nonlinear photonics |
url | https://www.mdpi.com/2079-4991/11/12/3193 |
work_keys_str_mv | AT lauravittadello nirtonirimagingextendedexcitationupto22mmusingharmonicnanoparticleswithatunablehighenergytigerwidefieldmicroscope AT janklenen nirtonirimagingextendedexcitationupto22mmusingharmonicnanoparticleswithatunablehighenergytigerwidefieldmicroscope AT karstenkoempe nirtonirimagingextendedexcitationupto22mmusingharmonicnanoparticleswithatunablehighenergytigerwidefieldmicroscope AT laurakocsor nirtonirimagingextendedexcitationupto22mmusingharmonicnanoparticleswithatunablehighenergytigerwidefieldmicroscope AT zsuzsannaszaller nirtonirimagingextendedexcitationupto22mmusingharmonicnanoparticleswithatunablehighenergytigerwidefieldmicroscope AT mircoimlau nirtonirimagingextendedexcitationupto22mmusingharmonicnanoparticleswithatunablehighenergytigerwidefieldmicroscope |