NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield Microscope

Near-infrared (NIR) marker-based imaging is of growing importance for deep tissue imaging and is based on a considerable reduction of optical losses at large wavelengths. We aim to extend the range of NIR excitation wavelengths particularly to values beyond 1.6 <inline-formula><math xmlns=&...

Full description

Bibliographic Details
Main Authors: Laura Vittadello, Jan Klenen, Karsten Koempe, Laura Kocsor, Zsuzsanna Szaller, Mirco Imlau
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/11/12/3193
_version_ 1827670749486252032
author Laura Vittadello
Jan Klenen
Karsten Koempe
Laura Kocsor
Zsuzsanna Szaller
Mirco Imlau
author_facet Laura Vittadello
Jan Klenen
Karsten Koempe
Laura Kocsor
Zsuzsanna Szaller
Mirco Imlau
author_sort Laura Vittadello
collection DOAJ
description Near-infrared (NIR) marker-based imaging is of growing importance for deep tissue imaging and is based on a considerable reduction of optical losses at large wavelengths. We aim to extend the range of NIR excitation wavelengths particularly to values beyond 1.6 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m in order to profit from the low loss biological windows NIR-III and NIR-IV. We address this task by studying NIR-excitation to NIR-emission conversion and imaging in the range of 1200 up to 2400 nm at the example of harmonic Mg-doped lithium niobate nanoparticles (i) using a nonlinear diffuse femtosecond-pulse reflectometer and (ii) a Tunable hIGh EneRgy (TIGER) widefield microscope. We successfully demonstrate the existence of appropriate excitation/emission configurations in this spectral region taking harmonic generation into account. Moreover, NIR-imaging using the most striking configurations NIR-III to NIR-I, based on second harmonic generation (SHG), and NIR-IV to NIR-I, based on third harmonic generation (THG), is demonstrated with excitation wavelengths from 1.6–1.8 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m and from 2.1–2.2 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m, respectively. The advantages of the approach and the potential to additionally extend the emission range up to 2400 nm, making use of sum frequency generation (SFG) and difference frequency generation (DFG), are discussed.
first_indexed 2024-03-10T03:27:26Z
format Article
id doaj.art-8b3b479d15594d44ae1f4d8fbb29e855
institution Directory Open Access Journal
issn 2079-4991
language English
last_indexed 2024-03-10T03:27:26Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Nanomaterials
spelling doaj.art-8b3b479d15594d44ae1f4d8fbb29e8552023-11-23T09:49:10ZengMDPI AGNanomaterials2079-49912021-11-011112319310.3390/nano11123193NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield MicroscopeLaura Vittadello0Jan Klenen1Karsten Koempe2Laura Kocsor3Zsuzsanna Szaller4Mirco Imlau5Department of Physics, Osnabrueck University, 49076 Osnabrueck, GermanyDepartment of Physics, Osnabrueck University, 49076 Osnabrueck, GermanyResearch Center for Cellular Nanoanalytics, Osnabrueck (CellNanOs), Osnabrueck University, 49076 Osnabrueck, GermanyWigner Research Centre for Physics, Institute for Solid State Physics and Optics, Konkoly-Thege M. út 29-33, H-1121 Budapest, HungaryWigner Research Centre for Physics, Institute for Solid State Physics and Optics, Konkoly-Thege M. út 29-33, H-1121 Budapest, HungaryDepartment of Physics, Osnabrueck University, 49076 Osnabrueck, GermanyNear-infrared (NIR) marker-based imaging is of growing importance for deep tissue imaging and is based on a considerable reduction of optical losses at large wavelengths. We aim to extend the range of NIR excitation wavelengths particularly to values beyond 1.6 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m in order to profit from the low loss biological windows NIR-III and NIR-IV. We address this task by studying NIR-excitation to NIR-emission conversion and imaging in the range of 1200 up to 2400 nm at the example of harmonic Mg-doped lithium niobate nanoparticles (i) using a nonlinear diffuse femtosecond-pulse reflectometer and (ii) a Tunable hIGh EneRgy (TIGER) widefield microscope. We successfully demonstrate the existence of appropriate excitation/emission configurations in this spectral region taking harmonic generation into account. Moreover, NIR-imaging using the most striking configurations NIR-III to NIR-I, based on second harmonic generation (SHG), and NIR-IV to NIR-I, based on third harmonic generation (THG), is demonstrated with excitation wavelengths from 1.6–1.8 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m and from 2.1–2.2 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m, respectively. The advantages of the approach and the potential to additionally extend the emission range up to 2400 nm, making use of sum frequency generation (SFG) and difference frequency generation (DFG), are discussed.https://www.mdpi.com/2079-4991/11/12/3193biological windowsNIR-IIINIR-IVNIR imagingnonlinear microscopynonlinear photonics
spellingShingle Laura Vittadello
Jan Klenen
Karsten Koempe
Laura Kocsor
Zsuzsanna Szaller
Mirco Imlau
NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield Microscope
Nanomaterials
biological windows
NIR-III
NIR-IV
NIR imaging
nonlinear microscopy
nonlinear photonics
title NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield Microscope
title_full NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield Microscope
title_fullStr NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield Microscope
title_full_unstemmed NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield Microscope
title_short NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield Microscope
title_sort nir to nir imaging extended excitation up to 2 2 μm using harmonic nanoparticles with a tunable high energy tiger widefield microscope
topic biological windows
NIR-III
NIR-IV
NIR imaging
nonlinear microscopy
nonlinear photonics
url https://www.mdpi.com/2079-4991/11/12/3193
work_keys_str_mv AT lauravittadello nirtonirimagingextendedexcitationupto22mmusingharmonicnanoparticleswithatunablehighenergytigerwidefieldmicroscope
AT janklenen nirtonirimagingextendedexcitationupto22mmusingharmonicnanoparticleswithatunablehighenergytigerwidefieldmicroscope
AT karstenkoempe nirtonirimagingextendedexcitationupto22mmusingharmonicnanoparticleswithatunablehighenergytigerwidefieldmicroscope
AT laurakocsor nirtonirimagingextendedexcitationupto22mmusingharmonicnanoparticleswithatunablehighenergytigerwidefieldmicroscope
AT zsuzsannaszaller nirtonirimagingextendedexcitationupto22mmusingharmonicnanoparticleswithatunablehighenergytigerwidefieldmicroscope
AT mircoimlau nirtonirimagingextendedexcitationupto22mmusingharmonicnanoparticleswithatunablehighenergytigerwidefieldmicroscope