Four-Objective Optimization of an Irreversible Stirling Heat Engine with Linear Phenomenological Heat-Transfer Law

This paper combines the mechanical efficiency theory and finite time thermodynamic theory to perform optimization on an irreversible Stirling heat-engine cycle, in which heat transfer between working fluid and heat reservoir obeys linear phenomenological heat-transfer law. There are mechanical losse...

Full description

Bibliographic Details
Main Authors: Haoran Xu, Lingen Chen, Yanlin Ge, Huijun Feng
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/24/10/1491
Description
Summary:This paper combines the mechanical efficiency theory and finite time thermodynamic theory to perform optimization on an irreversible Stirling heat-engine cycle, in which heat transfer between working fluid and heat reservoir obeys linear phenomenological heat-transfer law. There are mechanical losses, as well as heat leakage, thermal resistance, and regeneration loss. We treated temperature ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>x</mi></semantics></math></inline-formula> of working fluid and volume compression ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> as optimization variables, and used the NSGA-II algorithm to carry out multi-objective optimization on four optimization objectives, namely, dimensionless shaft power output <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>P</mi><mo>¯</mo></mover><mi>s</mi></msub></mrow></semantics></math></inline-formula>, braking thermal efficiency <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula>, dimensionless efficient power <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>E</mi><mo>¯</mo></mover><mi>p</mi></msub></mrow></semantics></math></inline-formula> and dimensionless power density <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>P</mi><mo>¯</mo></mover><mi>d</mi></msub></mrow></semantics></math></inline-formula>. The optimal solutions of four-, three-, two-, and single-objective optimizations are reached by selecting the minimum deviation indexes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>D</mi></semantics></math></inline-formula> with the three decision-making strategies, namely, TOPSIS, LINMAP, and Shannon Entropy. The optimization results show that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>D</mi></semantics></math></inline-formula> reached by TOPSIS and LINMAP strategies are both 0.1683 and better than the Shannon Entropy strategy for four-objective optimization, while the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>D</mi></semantics></math></inline-formula>s reached for single-objective optimizations at maximum <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>P</mi><mo>¯</mo></mover><mi>s</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>E</mi><mo>¯</mo></mover><mi>p</mi></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>P</mi><mo>¯</mo></mover><mi>d</mi></msub></mrow></semantics></math></inline-formula> conditions are 0.1978, 0.8624, 0.3319, and 0.3032, which are all bigger than 0.1683. This indicates that multi-objective optimization results are better when choosing appropriate decision-making strategies.
ISSN:1099-4300