Summary: | Abstract Background To compare the accuracy of nine intraocular lens (IOL) power calculation formulas, including three traditional formulas (SRK/T, Haigis, and Hoffer Q) and six new-generation formulas (Barrett Universal II [BUII], Hill-Radial Basis Function [RBF] 3.0, Kane, Emmetropia verifying optical [EVO], Ladas Super, and Pearl-DGS) in patients who underwent cataract surgery after acute primary angle closure (APAC). Methods In this retrospective cross-sectional study, 44 eyes of 44 patients (APAC) and 60 eyes of 60 patients (control) were included. We compared the mean absolute error, median absolute error (MedAE), and prediction error after surgery. Subgroup analyses were performed on whether axial length (AL) or preoperative laser peripheral iridotomy affected the postoperative refractive outcomes. Results In the APAC group, all formulas showed higher MedAE and more myopic shift than the control group (all P < 0.05). In APAC eyes with AL ≥ 22 mm, there were no differences in MedAEs according to the IOL formulas; however, in APAC eyes with AL < 22 mm, Haigis (0.49 D) showed lower MedAE than SRK/T (0.82 D) (P = 0.036) and Hill-RBF 3.0 (0.54 D) showed lower MedAE than SRK/T (0.82 D), Hoffer Q (0.75 D) or Kane (0.83 D) (P = 0.045, 0.036 and 0.027, respectively). Pearl-DGS (0.63 D) showed lower MedAE than Hoffer Q (0.75 D) and Kane (0.83 D) (P = 0.045 and 0.036, respectively). Haigis and Hill-RBF 3.0 showed the highest percentage (46.7%) of eyes with PE within ± 0.5 D in APAC eyes with AL < 22 mm. Iridectomized eyes did not show superior precision than the non-iridotomized eyes in the APAC group. Conclusions Refractive errors in the APAC group were more myopic than those in the control group. Haigis and Hill-RBF 3.0 showed high precision in the eyes with AL < 22 mm in the APAC group.
|