Flexibility Estimation of Residential Heat Pumps under Heat Demand Uncertainty

With the increasing penetration of intermittent renewable energy generation, there is a growing demand to use the inherent flexibility within buildings to absorb renewable related disruptions. Heat pumps play a particularly important role, as they account for a high share of electricity consumption...

Full description

Bibliographic Details
Main Authors: Zhengjie You, Michel Zade, Babu Kumaran Nalini, Peter Tzscheutschler
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/18/5709
Description
Summary:With the increasing penetration of intermittent renewable energy generation, there is a growing demand to use the inherent flexibility within buildings to absorb renewable related disruptions. Heat pumps play a particularly important role, as they account for a high share of electricity consumption in residential units. The most common way of quantifying the flexibility is by considering the response of the building or the household appliances to external penalty signals. However, this approach neither accounts for the use cases of flexibility trading nor considers its impact on the prosumer comfort, when the heat pump should cover the stochastic domestic hot water (DHW) consumption. Therefore, in this paper, a new approach to quantifying the flexibility potential of residential heat pumps is proposed. This methodology enables the prosumers themselves to generate and submit the operating plan of the heat pump to the system operator and trade the alternative operating plans of the heat pump on the flexibility market. In addition, the impact of the flexibility provision on the prosumer comfort is investigated by calculating the warm water temperature drops in the thermal energy storage given heat demand forecast errors. The results show that the approach with constant capacity reservation in the thermal energy storage provides the best solution, with an average of 2.5 min unsatisfactory time per day and a maximum temperature drop of 2.3 °C.
ISSN:1996-1073