Study of cell adhesion, osteogenesis, and angiogenesis of a “groove” structure micro-arc oxidation titanium

The use of titanium alloy-based dental implant restorations has gained popularity due to their attractive properties. Current research on the surface modification of titanium materials primarily centers around the surface integration of various metal ions, the incorporation of different drugs, or ot...

Full description

Bibliographic Details
Main Authors: Yifan Fei, Wenyi Yang, Zhaoyang Guo, Haishui Sun, Fan Yang, Jingzhou Hu
Format: Article
Language:English
Published: Elsevier 2024-02-01
Series:Applied Surface Science Advances
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666523923001861
Description
Summary:The use of titanium alloy-based dental implant restorations has gained popularity due to their attractive properties. Current research on the surface modification of titanium materials primarily centers around the surface integration of various metal ions, the incorporation of different drugs, or other materials. By simply adjusting the process parameters of micro-arc oxidation, we were able to form a “groove” structure in titanium chips. Scanning Electron Microscopy (SEM) observations revealed that Bone Marrow Stem Cells (BMSCs) noticeably elongated along the “grooves”. Immunofluorescence results indicated an elevated expression of Osteocalcin (OCN) and CD31 in “groove” structure group. Furthermore, “groove” structure group also amplified the expression of osteogenic genes (Alkaline Phosphatase, ALP; Osteocalcin, OCN) and angiogenic genes (CD31, Vascular Endothelial Growth Factor, VEGF; Angiopoietin-2, ANG2; and Fibroblast Growth Factor, FGF) on the material surface (P < 0.05). This study suggests that the “groove” structure enhances early cell adhesion on the material surface and improves osteogenic and angiogenic differentiation on the titanium surface, thereby providing potential research implications for enhancing the initial stability of implants.
ISSN:2666-5239