Fractional View Study of the Brusselator Reaction–Diffusion Model Occurring in Chemical Reactions

In this paper, we study a fractional Brusselator reaction–diffusion model with the help of the residual power series transform method. Specific reaction–diffusion chemical processes are modeled by applying the fractional Brusselator reaction–diffusion model. It should be mentioned that many problems...

Full description

Bibliographic Details
Main Authors: Saleh Alshammari, M. Mossa Al-Sawalha, Jamal R. Humaidi
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/2/108
Description
Summary:In this paper, we study a fractional Brusselator reaction–diffusion model with the help of the residual power series transform method. Specific reaction–diffusion chemical processes are modeled by applying the fractional Brusselator reaction–diffusion model. It should be mentioned that many problems in nonlinear science are characterized by fractional differential equations, where an unknown term occurs when a fractional-order derivative is operating on it. The analytic method of this problem is rarely discussed in the literature, despite numerous scholars having researched its application and usefulness. To validate our proposed method’s accuracy, we compare the numerical results of the residual power series transform method and the exact result with different fractional orders. The solution shows that the introduced approach is a good tool for solving linear and nonlinear fractional system differential equations. Finally, we provide two and three-dimensional graphical plots to support the impact of the fractional derivative on the behavior of the achieved profile results to the proposed equations.
ISSN:2504-3110