Leveraging Uncertainty in Terrestrial Ecosystem Carbon Stocks and Fluxes

Abstract Forests sequester ∼25% of anthropogenic carbon (C) emissions annually and are of increasing interest for their potential as Nature‐based Climate Solutions (NbCS). Emergent from the need to assess terrestrial ecosystem health and quantify C storage and fluxes, several gridded products docume...

Full description

Bibliographic Details
Main Authors: A. T. Trugman, G. R. Quetin
Format: Article
Language:English
Published: Wiley 2023-03-01
Series:Earth's Future
Subjects:
Online Access:https://doi.org/10.1029/2022EF003322
Description
Summary:Abstract Forests sequester ∼25% of anthropogenic carbon (C) emissions annually and are of increasing interest for their potential as Nature‐based Climate Solutions (NbCS). Emergent from the need to assess terrestrial ecosystem health and quantify C storage and fluxes, several gridded products documenting terrestrial C and changes in C stocks over time have been developed. However, researchers have not yet systematically compared C distributions across products, or developed a clear path forward for investigating and leveraging this cross‐product uncertainty in estimates of terrestrial C. Alaniz et al. (2022, https://doi.org/10.1029/2021EF002560) synthesize multiple published products to constrain the distribution of forest C stocks and fluxes globally. Building off of their results, we comment on opportunities for advancing both basic science and NbCS policy recommendations through systematic product cross‐comparisons and targeting of areas with differing levels of uncertainties in the terrestrial C sink.
ISSN:2328-4277